DOI QR코드

DOI QR Code

An innovative fraction laws with ring support: Active vibration control of rotating FG cylindrical shell

  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Abdelhakim Benslimane (Laboratoire de Mecanique Materiaux et Energetique (L2ME), Departement Genie Mecanique, Faculte de Technologie, Universite de Bejaia) ;
  • Imene Harbaoui (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar) ;
  • Sofiene Helaili (Carthage University, Tunisia Polytechnic School) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed R. Ali (Faculty of Engineering and Technology, Future University in Egypt) ;
  • Zafer Iqbal (Department of Mathematics, University of Sargodha) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.09.27
  • Accepted : 2023.03.03
  • Published : 2023.04.25

Abstract

Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increase and forward frequencies decreases.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X. 
  2. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125. 
  3. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579. 
  4. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009. 
  5. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1. 
  6. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039. 
  7. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219. 
  8. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392. 
  9. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277. 
  10. Al-Furjan, M.S.H., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2021), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Seminumerical and finite element modeling", Thin Wall. Struct., 159, 107242. https://doi.org/10.1016/j.tws.2020.107242. 
  11. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), Nonlinear Vibrations of Simply Love, A.E.H. (1888), 'On the Small Free Vibrations and Deformation of Thin Elastic Shell', Philosophical Transactions of the Royal Society, London, UK. 
  12. Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002. 
  13. Arnold, R.N. and Warburton, G.B. (1953), "The flexural vibrations of thin cylinders", Proc. Inst. Mech. Eng., 167(1), 62-80. https://doi.org/10.1243/PIMEPROC195316701402. 
  14. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fibers, 17(4), 1-15. https://doi.org/10.1080/15440478.2018.1503129. 
  15. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Camb. Philos. Soc., 7, 101-111. 
  16. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091. 
  17. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high-speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010. 
  18. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254. 
  19. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mech., 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3. 
  20. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite opentype shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599. 
  21. Dewangan, H.C., Panda, S.K. and Sharma, N. (2020a), "Experimental validation of role of cut-out parameters on modal responses of laminated composite-A coupled FE approach", Int. J. Appl. Mech., 12(6), 2050068. https://doi.org/10.1142/S1758825120500684. 
  22. Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020b), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Based Des. Struct. Mach., 50(5), 1640-1657. https://doi.org/10.1080/15397734.2020.1759432. 
  23. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME, J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733. 
  24. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139. 
  25. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5. 
  26. Ghaemian, S., Muderrisoglu, Z. and Yazgan, U. (2020), "The effect of finite element modeling assumptions on collapse capacity of an RC frame building", Earthq. Struct., 18(5), 555-565. https://doi.org/10.12989/eas.2020.18.5.555. 
  27. Goncalves, P.B. and Batista. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1006/jsvi.2001.4139. 
  28. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723. 
  29. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", J. Braz. Soc. Mech. Sci. Eng., 41, 1-15. https://doi.org/10.1177/1077546319863251. 
  30. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38(5), 4163-4179. https://doi.org/10.1007/s00366-021-01399-3. 
  31. Koizumi, M. (1997), "FGM activities in Japan", Compos., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9. 
  32. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct, 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361. 
  33. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S. 
  34. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X. 
  35. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2021), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 37(4), 3489-3520. https://doi.org/10.1007/s00366-020-01004-z. 
  36. Mehar, K. and Panda, S.K. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266. 
  37. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181. 
  38. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. 
  39. Mehar, K., Panda, S. K., & Mahapatra, T. R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005. 
  40. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057. 
  41. Mehar, K., Panda, S.K. and Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409. 
  42. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324. 
  43. Mohammadi, A., Lashini, H., Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264. 
  44. Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6. 
  45. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0. 
  46. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447. 
  47. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5. 
  48. Panda, S.K. and Singh, B.N. (2013), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM#", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2020.1748052. 
  49. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419. 
  50. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of prestresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605. 
  51. Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today: Proc., 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537. 
  52. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865. 
  53. Ramteke, P., Mehar, K., Sharma, N. and Panda, S. (2020a), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid and exponential) and variable porosity (even/uneven)", Sci. Iran., 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290. 
  54. Reisi, A., Mirdamadi, H.R. and Rahgozar, M.A. (2020), "Numerical and experimental study of the nested-eccentric-cylindrical shells damper", Earthq. Struct., 18(5), 637-648. https://doi.org/10.12989/eas.2020.18.5.637. 
  55. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8. 
  56. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautics and Space Administration, Washington, D.C., USA. 
  57. Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x. 
  58. Shokrgozar, A., Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(2), 512-529. https://doi.org/10.1177/0954406219883312. 
  59. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412. 
  60. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2(4), 228-236. https://doi.org/10.4236/eng.2010.24033. 
  61. Srinivasan, A.V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME, J. Eng. Ind., 93, 1229-1232. https://doi.org/10.1115/1.3428067. 
  62. Tu, Y.H., Lo, T.Y. and Chuang, T. H. (2020), "Lateral loading test for partially confined and unconfined masonry panels", Earthq. Struct., 18(3), 379-390. https://doi.org/10.12989/eas.2020.18.3.379. 
  63. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708. 
  64. Wang, C. and and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0. 
  65. Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Method. Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1. 
  66. Zheng, W., Liu, J., Oyarhossein, M.A., Safarpour, H. and Habibi, M. (2023), "Prediction of nth-order derivatives for vibration responses of a sandwich shell composed of a magnetorheological core and composite face layers", Eng. Anal. Bound. Elem., 146, 170-183. https://doi.org/10.1016/j.enganabound.2022.10.019. 
  67. Zhu, L., Ren, H., Habibi, M., Mohammed, K.J. and Khadimallah, M.A. (2022), "Predicting the environmental economic dispatch problem for reducing waste nonrenewable materials via an innovative constraint multi-objective Chimp Optimization Algorithm", J. Clean. Prod., 365, 132697. https://doi.org/10.1016/j.jclepro.2022.132697. 
  68. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.