DOI QR코드

DOI QR Code

Vehicle Collision Simulation for Roadblocks in Nuclear Power Plants Using LS-DYNA

LS-DYNA를 이용한 원자력발전소의 로드블록에 대한 차량 충돌 시뮬레이션

  • SeungGyu Lee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Dongwook Kim (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Phill-Seung Lee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 이승규 (한국과학기술원 기계공학과 ) ;
  • 김동욱 (한국과학기술원 기계공학과 ) ;
  • 이필승 (한국과학기술원 기계공학과)
  • Received : 2023.03.14
  • Accepted : 2023.04.19
  • Published : 2023.04.30

Abstract

This paper introduces a simulation method for the collision between roadblocks and vehicles using LS-DYNA. The need to evaluate the performance of anti-ram barriers to prepare for vehicle impact has increased since vehicle impact threats have been included as a design criterion for nuclear power plants. Anti-ram barriers are typically certified for their performance through collision experiments. However, because Koreas has no performance testing facilities for anti-ram barriers, their performance can only be verified through simulations. LS-DYNA is a specialized program for collision simulation. Various organizations, including NCAC, distributes numerical models that have been validated for their accuracy with collision tests. In this study, we constructed a finite element model of the most critical vehicle barrier module and simulated collision between roadblocks and vehicles. The calculated results were verified by applying the validation criteria for vehicle safety facility collision simulations of NCHRP 179.

본 논문에서는 LS-DYNA를 활용한 원자력발전소 설치 로드블록 차량 시뮬레이션 방법을 소개한다. 차량 강습 위협이 원자력 발전소의 설계기준위협으로 포함된 이후로 차량 강습을 대비하기 위한 차량 방벽(Anti-ram barrier)의 성능 평가 소요가 커지고 있다. 차량 방벽은 일반적으로 충돌 실험을 통하여 성능을 인증 받는다. 하지만 국내에서는 차량 방벽에 대한 성능 시험 시설이 마련되어 있지 않아, 시뮬레이션을 통한 차량 방벽 성능 검증이 필요하다. LS-DYNA는 충돌 시뮬레이션에 특화되어 있으며, NCAC를 비롯한 여러 기관에서 충돌 시험과의 타당성 검증을 완료한 수치 모델을 배포하고 있다. 본 논문에서는 로드블록의 가장 핵심적인 차량 차단막 모듈의 FE 모델을 구축하여 충돌 시뮬레이션을 수행하였다. 계산된 결과는 NCHRP 179의 차량 안전 시설 충돌 시뮬레이션 검증 기준을 준용하여 검증하였다. 그 결과 모래시계 에너지(hourglass energy)가 총 에너지의 5%를 넘지 않고 내부 에너지의 10%를 넘지 않는 것을 확인하였으며, added mass가 1% 미만으로 기준인 10%를 넘지 않는 것을 확인하였다. 향후 FE 모델을 활용하여 물리적 방벽의 성능을 평가하여 데이터 베이스를 구축할 예정이다.

Keywords

Acknowledgement

본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구사업의 연구결과입니다(No. 2106045).

References

  1. ASTM (2018) Standard Test Method for Crash Testing of Vehicle Security Barriers, Designation F2656/F2656M.
  2. Choi, H.G., Lee, P.S. (2023) Towards Improving the 2D-MITC4 Element for Analysis of Plane Stress and Strain Problems, Comput. & Struct., 275, p.106933.
  3. Chung, C.H., Lee, J., Jung, R., Yu, T.Y. (2016) Assessment of Impact Resistance Performance of Post-Tensioned Curved Wall using Numerical Impact Analysis, J. Comput. Struct. Eng. Inst. Korea, 29(2), pp.161~167. https://doi.org/10.7734/COSEIK.2016.29.2.161
  4. Cowper, G.R., Symonds, P.S. (1957) Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams, Brown Univ Providence Ri.
  5. Hallquist, J.O. (2020) LS-DYNA Keyword User'S Manual, Volume I R12. Livermore Software Technology Corporation.
  6. ISO/IWA 14-1:2013(en) (2013) Vehicle Security Barriers-Part 1: Performance Requirement, Vehicle Impact Test Method and Performance Rating, Geneva: International Standards Organization.
  7. Jeon, H.M., Lee, Y., Lee, P.S., Bathe, K.J. (2015) The MITC3+ Shell Element in Geometric Nonlinear Analysis, Comput. & Struct., 146, pp.91~104. https://doi.org/10.1016/j.compstruc.2014.09.004
  8. Jones, N. (1989) Structural Impact, Cambridge University Press, Cambridge.
  9. Jung, J., Jun, H., Lee, P.S. (2022) Self-Updated Four-Node Finite Element using Deep Learning, Comput. Mech., 69(1), pp.23~44. https://doi.org/10.1007/s00466-021-02081-7
  10. KARCO Engineering (2001) Final Report of New Car Assessment Program Testing of a 2002 Ford.
  11. Kim, G.J., Kim, D., No, G.S. (2017) Vehicle Protection Safety Facility Performance Evaluation Using Computer Crash Simulation, Korean Soc. Road Eng., 19(2), pp.80~86.
  12. Kim, K.D., Ko, M.G., Kim, D.S., Joo, J.W., Jang, D.Y. (2012) Design of High-Performance Longitudinal Flexible Barrier Using Vehicle Velocity-time History, J. Korean Soc. Hazard Mitig., 12(3), pp.157~168.
  13. Kim, S.E., Jeon, S.Y., Hong, K.E., Lee, M.C. (2011) Performance Evaluation of Composite Safety Barrier for Bridge by Vehicle Impact Simulation, J. Comput. Struct. Eng. Inst. Korea, 24(5), pp.499~506.
  14. Kinney, S.A. (2013) Assessment of Load Sharing Members in an Anti-ram Bollard System Subjected to Vehicle Impacts, Master Thesis, Pennsylvania State University, p.206.
  15. Ko, Y., Lee, P.S., Bathe, K.J. (2016) The MITC4+ Shell Element and Its Performance, Comput & Struct, 169, pp.57~68. https://doi.org/10.1016/j.compstruc.2016.03.002
  16. Ko, Y., Lee, Y., Lee, P.S., Bathe, K.J. (2017) Performance of the MITC3+ and MITC4+ Shell Elements in Widely-used Benchmark Problems, Comput & Struct, 193, pp.187~206. https://doi.org/10.1016/j.compstruc.2017.08.003
  17. Lee, C., Kim, S., Lee, P.S. (2021a) The Strain-Smoothed 4-Node Quadrilateral Finite Element, Comput. Methods Appl. Mech. & Eng., 373, p.113481.
  18. Lee, C., Lee, D.H., Lee, P.S. (2022a) The Strain-Smoothed MITC3+ Shell Element in Nonlinear Analysis, Comput. & Struct., 266, p.106768.
  19. Lee, S., Cho, J., Lee, C., Cho, S. (2021b) Experimental and Numerical Investigations of Near-Field Underwater Explosions, Struct. Eng. & Mech., 77(3), pp.395~406.
  20. Lee, S., Choi, H.G., Kim, D.W., Choi, J.H., Lee, P.S. (2022b) Numerical Analysis of Physical Barrier Collision against Vehicle-Ramming Assault and Its Verification, Nuclear Safety Technology Analysis Report, NSTAR-22-PS32-346.
  21. Lee, Y., Lee, P. S., Bathe, K. J. (2014) The MITC3+ Shell Element and Its Performance, Comput. & Struct., 138, pp.12~23. https://doi.org/10.1016/j.compstruc.2014.02.005
  22. Marzougui, D., Samaha, R.R., Tahan, F., Cui, C., Kan, C.D. (2012) Extended Validation of the Finite Element Model for the 2002 Ford Explorer Sport Utility Vehicle, Working Paper NCAC 2012-W-002, National Crash Analysis Center, The George Washington University, Washington DC, USA NCAC.
  23. National Academies of Sciences, Engineering, and Medicine (2011) Procedures for Verification and Validation of Computer Simulations Used for Roadside Safety Applications, Washington, DC: The National Academies Press.
  24. No, M.H., Park, J.H., Seo, C.W., Sung, J.G., Yun, D.G. (2022) Analysis between Computer Simulation and Real-car Crash Test of Energy Absorption Facilities for Various Road Environments, KSCE J. Civil & Environ. Eng. Res., 42(3), pp.399~407.
  25. PAS 68:2013 (2013) Impact Test Specifications for Vehicle Security Barriers.
  26. Shin, H.S., Kim, S.W., Moon, J.H. (2022) Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions, J. Comput, Struct, Eng. Inst. Korea, 35(6), pp.333~342. https://doi.org/10.7734/COSEIK.2022.35.6.333
  27. Shin, K., Bae, K. (2016) Development of Guardrail End Treatment System using LS-DYNA, J. Soc. Disaster Inf., 12(3), pp.279~285.
  28. Yoo, T.K., Qiu, T., Reese, L., Rado, Z. (2016) Field Testing and Numerical Investigation of Streetscape Vehicular Anti-ram Barriers under Vehicular Impact using FEM-only and Coupled FEM-SPH Simulations, Int. J. Prot. Struct., 7(2), pp.213~231. https://doi.org/10.1177/2041419616652527
  29. Zhang, Y., Li, R., Heng, K., Hu, F. (2022) Dynamic behaviors of Optimized K12 Anti-Ram Bollards, Symmetry, 14(8), p.1703.