DOI QR코드

DOI QR Code

The role of diuretic hormones (DHs) and their receptors in Drosophila

  • Gahbien Lee (Department of Life Sciences, College of Natural Sciences, Ewha Womans University) ;
  • Heejin Jang (Department of Life Sciences, College of Natural Sciences, Ewha Womans University) ;
  • Yangkyun Oh (Department of Life Sciences, College of Natural Sciences, Ewha Womans University)
  • Received : 2023.02.03
  • Accepted : 2023.03.28
  • Published : 2023.04.30

Abstract

Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrient-sensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems.

Keywords

Acknowledgement

This work was supported by the Ewha Womans University Research Grant of 2022 (1-2022-0352-001-1), the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00212599) to Y.O.

References

  1. Pribram KH (1960) A review of theory in physiological psychology. Annu Rev Psychol 11, 1-40 https://doi.org/10.1146/annurev.ps.11.020160.000245
  2. Phillips J (1981) Comparative physiology of insect renal function. Am J Physiol Regul Integr Comp Physiol 241, 241-257 https://doi.org/10.1152/ajpregu.1981.241.5.R241
  3. McFarland DJ (1977) Decision making in animals. Nature 269, 15-21 https://doi.org/10.1038/269015a0
  4. Nassel DR and Zandawala M (2019) Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 179, 101607
  5. Chung BY, Ro J, Hutter SA et al (2017) Drosophila neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep 19, 2441-2450 https://doi.org/10.1016/j.celrep.2017.05.085
  6. Cabrero P, Radford JC, Broderick KE et al (2002) The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol 205, 3799-3807 https://doi.org/10.1242/jeb.205.24.3799
  7. Dus M, Lai Jason SY, Gunapala Keith M et al (2015) Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87, 139-151 https://doi.org/10.1016/j.neuron.2015.05.032
  8. Oh Y, Lai JSY, Min S et al (2021) Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron 109, 1979-1995 e1976
  9. Hector CE, Bretz CA, Zhao Y and Johnson EC (2009) Functional differences between two CRF-related diuretic hormone receptors in Drosophila. J Exp Biol 212, 3142-3147 https://doi.org/10.1242/jeb.033175
  10. Veenstra JA, Agricola H-J and Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334, 499-516 https://doi.org/10.1007/s00441-008-0708-3
  11. Johnson EC, Bohn LM and Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 207, 743-748 https://doi.org/10.1242/jeb.00818
  12. Johnson EC, Shafer OT, Trigg JS et al (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208, 1239-1246 https://doi.org/10.1242/jeb.01529
  13. Audsley N, Kay I, Hayes TK and Coast GM (1995) Cross reactivity studies of CRF-related peptides on insect Malpighian tubules. Comp Biochem Physiol A 110, 87-93 https://doi.org/10.1016/0300-9629(94)00132-D
  14. Furuya K, Harper MA, Schegg KM and Schooley DA (2000) Isolation and characterization of CRF-related diuretic hormones from the whitelined sphinx moth Hyles lineata. Insect Biochem Mol Biol 30, 127-133 https://doi.org/10.1016/S0965-1748(99)00106-X
  15. Baldwin DC, Schegg KM, Furuya K, Lehmberg E and Schooley DA (2001) Isolation and identification of a diuretic hormone from Zootermopsis nevadensis. Peptides 22, 147-152 https://doi.org/10.1016/S0196-9781(00)00371-5
  16. O'Donnell MJ, Dow JA, Huesmann GR, Tublitz NJ and Maddrell SH (1996) Separate control of anion and cation transport in malpighian tubules of Drosophila melanogaster. J Exp Biol 199, 1163-1175 https://doi.org/10.1242/jeb.199.5.1163
  17. Coast GM (1996) Neuropeptides implicated in the control of diuresis in insects. Peptides 17, 327-336 https://doi.org/10.1016/0196-9781(95)02096-9
  18. Coast GM, Webster SG, Schegg KM, Tobe SS and Schooley DA (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 204, 1795-1804 https://doi.org/10.1242/jeb.204.10.1795
  19. Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT and Davies S-A (2016) The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80, 96-107 https://doi.org/10.1016/j.peptides.2016.02.004
  20. Zandawala M, Marley R, Davies SA and Nassel DR (2018) Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci 75, 1099-1115 https://doi.org/10.1007/s00018-017-2682-y
  21. Benguettat O, Jneid R, Soltys J et al (2018) The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog 14, e1007279
  22. Li X, Rommelaere S, Kondo S and Lemaitre B (2020) Renal purge of hemolymphatic lipids prevents the accumulation of ROS-induced inflammatory oxidized lipids and protects Drosophila from tissue damage. Immunity 52, 374-387 e376
  23. De Gregorio E, Spellman PT, Rubin GM and Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 98, 12590-12595 https://doi.org/10.1073/pnas.221458698
  24. Taghert PH and Shafer OT (2006) Mechanisms of clock output in the Drosophila circadian pacemaker system. J Biol Rhythms 21, 445-457 https://doi.org/10.1177/0748730406293910
  25. Konopka RJ and Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68, 2112-2116 https://doi.org/10.1073/pnas.68.9.2112
  26. Reddy P, Zehring WA, Wheeler DA et al (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701-710 https://doi.org/10.1016/0092-8674(84)90265-4
  27. Shin H-S, Bargiello TA, Clark BT, Jackson FR and Young MW (1985) An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature 317, 445-448 https://doi.org/10.1038/317445a0
  28. Vosshall LB, Price JL, Sehgal A, Saez L and Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606-1609 https://doi.org/10.1126/science.8128247
  29. Kunst M, Hughes Michael E, Raccuglia D et al (2014) Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 24, 2652-2664 https://doi.org/10.1016/j.cub.2014.09.077
  30. Cavanaugh Daniel J, Geratowski Jill D, Wooltorton Julian RA et al (2014) Identification of a circadian output circuit for rest: activity rhythms in Drosophila. Cell 157, 689-701 https://doi.org/10.1016/j.cell.2014.02.024
  31. Goda T, Tang X, Umezaki Y et al (2016) Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. J Neurosci 36, 11739
  32. King AN, Barber AF, Smith AE et al (2017) A peptidergic circuit links the circadian clock to locomotor activity. Curr Biol 27, 1915-1927 e1915
  33. Goda T, Umezaki Y, Alwattari F, Seo HW and Hamada FN (2019) Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity. Sci Rep 9, 838
  34. Goda T, Doi M, Umezaki Y et al (2018) Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev 32, 140-155 https://doi.org/10.1101/gad.307884.117
  35. Allada R and Siegel JM (2008) Unearthing the phylogenetic roots of sleep. Curr Biol 18, 670-679 https://doi.org/10.1016/j.cub.2008.06.033
  36. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1, 195-204
  37. Chen D, Sitaraman D, Chen N et al (2017) Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nat Commun 8, 154
  38. Jin X, Tian Y, Zhang ZC, Gu P, Liu C and Han J (2021) A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 31, 2075-2087 e2076
  39. Yarmolinsky DA, Zuker CS and Ryba NJP (2009) Common sense about taste: from mammals to insects. Cell 139, 234-244 https://doi.org/10.1016/j.cell.2009.10.001
  40. Yang Z, Huang R, Fu X et al (2018) A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 28, 1013-1025 https://doi.org/10.1038/s41422-018-0084-9
  41. Miyamoto T, Slone J, Song X and Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125 https://doi.org/10.1016/j.cell.2012.10.024
  42. Dus M, Min S, Keene AC, Lee GY and Suh GSB (2011) Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci U S A 108, 11644-11649 https://doi.org/10.1073/pnas.1017096108
  43. Chen YCD and Dahanukar A (2018) DH44 neurons: gut-brain amino acid sensors. Cell Res 28, 1048-1049 https://doi.org/10.1038/s41422-018-0101-z
  44. Bjordal M, Arquier N, Kniazeff J, Pin Jean P and Leopold P (2014) Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156, 510-521 https://doi.org/10.1016/j.cell.2013.12.024
  45. Park JH, Chen J, Jang S et al (2016) A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett 590, 493-500 https://doi.org/10.1002/1873-3468.12073
  46. Saper CB, Chou TC and Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199-211 https://doi.org/10.1016/S0896-6273(02)00969-8
  47. Koji T, Takashi O, Mayu T, Mio Y, Kiichiro T and Takashi AY (2018) Drosophila peptide hormones allatostatin A and diuretic hormone 31 exhibiting complementary gradient distribution in posterior midgut antagonistically regulate midgut senescence and adult lifespan. Zool Sci 35, 75-85 https://doi.org/10.2108/zs160210
  48. Jones WD, Cayirlioglu P, Grunwald Kadow I and Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90 https://doi.org/10.1038/nature05466
  49. Suh GSB, Wong AM, Hergarden AC et al (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854-859 https://doi.org/10.1038/nature02980
  50. Fischler W, Kong P, Marella S and Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054-1057 https://doi.org/10.1038/nature06101
  51. Huckesfeld S, Schlegel P, Miroschnikow A et al (2021) Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. eLife 10, e65745
  52. Birkhead TR and Pizzari T (2002) Postcopulatory sexual selection. Nat Rev Genet 3, 262-273 https://doi.org/10.1038/nrg774
  53. Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT and Pitnick S (2010) Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328, 354-357 https://doi.org/10.1126/science.1187096
  54. Lee K-M, Daubnerova I, Isaac RE et al (2015) A neuronal pathway that controls sperm ejection and storage in female Drosophila. Curr Biol 25, 790-797 https://doi.org/10.1016/j.cub.2015.01.050
  55. Keene AC, Duboue ER, McDonald DM et al (2010) Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 20, 1209-1215 https://doi.org/10.1016/j.cub.2010.05.029
  56. Lin H-H, Kuang MC, Hossain I et al (2022) A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 602, 632-638 https://doi.org/10.1038/s41586-022-04408-7
  57. Charmandari E, Tsigos C and Chrousos G (2004) Endocrinology of the stress response. Annu Rev Physiol 67, 259-284 https://doi.org/10.1146/annurev.physiol.67.040403.120816