Acknowledgement
This work was supported by the Ewha Womans University Research Grant of 2022 (1-2022-0352-001-1), the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00212599) to Y.O.
References
- Pribram KH (1960) A review of theory in physiological psychology. Annu Rev Psychol 11, 1-40 https://doi.org/10.1146/annurev.ps.11.020160.000245
- Phillips J (1981) Comparative physiology of insect renal function. Am J Physiol Regul Integr Comp Physiol 241, 241-257 https://doi.org/10.1152/ajpregu.1981.241.5.R241
- McFarland DJ (1977) Decision making in animals. Nature 269, 15-21 https://doi.org/10.1038/269015a0
- Nassel DR and Zandawala M (2019) Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 179, 101607
- Chung BY, Ro J, Hutter SA et al (2017) Drosophila neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep 19, 2441-2450 https://doi.org/10.1016/j.celrep.2017.05.085
- Cabrero P, Radford JC, Broderick KE et al (2002) The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol 205, 3799-3807 https://doi.org/10.1242/jeb.205.24.3799
- Dus M, Lai Jason SY, Gunapala Keith M et al (2015) Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87, 139-151 https://doi.org/10.1016/j.neuron.2015.05.032
- Oh Y, Lai JSY, Min S et al (2021) Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron 109, 1979-1995 e1976
- Hector CE, Bretz CA, Zhao Y and Johnson EC (2009) Functional differences between two CRF-related diuretic hormone receptors in Drosophila. J Exp Biol 212, 3142-3147 https://doi.org/10.1242/jeb.033175
- Veenstra JA, Agricola H-J and Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334, 499-516 https://doi.org/10.1007/s00441-008-0708-3
- Johnson EC, Bohn LM and Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 207, 743-748 https://doi.org/10.1242/jeb.00818
- Johnson EC, Shafer OT, Trigg JS et al (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208, 1239-1246 https://doi.org/10.1242/jeb.01529
- Audsley N, Kay I, Hayes TK and Coast GM (1995) Cross reactivity studies of CRF-related peptides on insect Malpighian tubules. Comp Biochem Physiol A 110, 87-93 https://doi.org/10.1016/0300-9629(94)00132-D
- Furuya K, Harper MA, Schegg KM and Schooley DA (2000) Isolation and characterization of CRF-related diuretic hormones from the whitelined sphinx moth Hyles lineata. Insect Biochem Mol Biol 30, 127-133 https://doi.org/10.1016/S0965-1748(99)00106-X
- Baldwin DC, Schegg KM, Furuya K, Lehmberg E and Schooley DA (2001) Isolation and identification of a diuretic hormone from Zootermopsis nevadensis. Peptides 22, 147-152 https://doi.org/10.1016/S0196-9781(00)00371-5
- O'Donnell MJ, Dow JA, Huesmann GR, Tublitz NJ and Maddrell SH (1996) Separate control of anion and cation transport in malpighian tubules of Drosophila melanogaster. J Exp Biol 199, 1163-1175 https://doi.org/10.1242/jeb.199.5.1163
- Coast GM (1996) Neuropeptides implicated in the control of diuresis in insects. Peptides 17, 327-336 https://doi.org/10.1016/0196-9781(95)02096-9
- Coast GM, Webster SG, Schegg KM, Tobe SS and Schooley DA (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 204, 1795-1804 https://doi.org/10.1242/jeb.204.10.1795
- Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT and Davies S-A (2016) The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80, 96-107 https://doi.org/10.1016/j.peptides.2016.02.004
- Zandawala M, Marley R, Davies SA and Nassel DR (2018) Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci 75, 1099-1115 https://doi.org/10.1007/s00018-017-2682-y
- Benguettat O, Jneid R, Soltys J et al (2018) The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog 14, e1007279
- Li X, Rommelaere S, Kondo S and Lemaitre B (2020) Renal purge of hemolymphatic lipids prevents the accumulation of ROS-induced inflammatory oxidized lipids and protects Drosophila from tissue damage. Immunity 52, 374-387 e376
- De Gregorio E, Spellman PT, Rubin GM and Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 98, 12590-12595 https://doi.org/10.1073/pnas.221458698
- Taghert PH and Shafer OT (2006) Mechanisms of clock output in the Drosophila circadian pacemaker system. J Biol Rhythms 21, 445-457 https://doi.org/10.1177/0748730406293910
- Konopka RJ and Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68, 2112-2116 https://doi.org/10.1073/pnas.68.9.2112
- Reddy P, Zehring WA, Wheeler DA et al (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701-710 https://doi.org/10.1016/0092-8674(84)90265-4
- Shin H-S, Bargiello TA, Clark BT, Jackson FR and Young MW (1985) An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature 317, 445-448 https://doi.org/10.1038/317445a0
- Vosshall LB, Price JL, Sehgal A, Saez L and Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606-1609 https://doi.org/10.1126/science.8128247
- Kunst M, Hughes Michael E, Raccuglia D et al (2014) Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 24, 2652-2664 https://doi.org/10.1016/j.cub.2014.09.077
- Cavanaugh Daniel J, Geratowski Jill D, Wooltorton Julian RA et al (2014) Identification of a circadian output circuit for rest: activity rhythms in Drosophila. Cell 157, 689-701 https://doi.org/10.1016/j.cell.2014.02.024
- Goda T, Tang X, Umezaki Y et al (2016) Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. J Neurosci 36, 11739
- King AN, Barber AF, Smith AE et al (2017) A peptidergic circuit links the circadian clock to locomotor activity. Curr Biol 27, 1915-1927 e1915
- Goda T, Umezaki Y, Alwattari F, Seo HW and Hamada FN (2019) Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity. Sci Rep 9, 838
- Goda T, Doi M, Umezaki Y et al (2018) Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev 32, 140-155 https://doi.org/10.1101/gad.307884.117
- Allada R and Siegel JM (2008) Unearthing the phylogenetic roots of sleep. Curr Biol 18, 670-679 https://doi.org/10.1016/j.cub.2008.06.033
- Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1, 195-204
- Chen D, Sitaraman D, Chen N et al (2017) Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nat Commun 8, 154
- Jin X, Tian Y, Zhang ZC, Gu P, Liu C and Han J (2021) A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 31, 2075-2087 e2076
- Yarmolinsky DA, Zuker CS and Ryba NJP (2009) Common sense about taste: from mammals to insects. Cell 139, 234-244 https://doi.org/10.1016/j.cell.2009.10.001
- Yang Z, Huang R, Fu X et al (2018) A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 28, 1013-1025 https://doi.org/10.1038/s41422-018-0084-9
- Miyamoto T, Slone J, Song X and Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125 https://doi.org/10.1016/j.cell.2012.10.024
- Dus M, Min S, Keene AC, Lee GY and Suh GSB (2011) Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci U S A 108, 11644-11649 https://doi.org/10.1073/pnas.1017096108
- Chen YCD and Dahanukar A (2018) DH44 neurons: gut-brain amino acid sensors. Cell Res 28, 1048-1049 https://doi.org/10.1038/s41422-018-0101-z
- Bjordal M, Arquier N, Kniazeff J, Pin Jean P and Leopold P (2014) Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156, 510-521 https://doi.org/10.1016/j.cell.2013.12.024
- Park JH, Chen J, Jang S et al (2016) A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett 590, 493-500 https://doi.org/10.1002/1873-3468.12073
- Saper CB, Chou TC and Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199-211 https://doi.org/10.1016/S0896-6273(02)00969-8
- Koji T, Takashi O, Mayu T, Mio Y, Kiichiro T and Takashi AY (2018) Drosophila peptide hormones allatostatin A and diuretic hormone 31 exhibiting complementary gradient distribution in posterior midgut antagonistically regulate midgut senescence and adult lifespan. Zool Sci 35, 75-85 https://doi.org/10.2108/zs160210
- Jones WD, Cayirlioglu P, Grunwald Kadow I and Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90 https://doi.org/10.1038/nature05466
- Suh GSB, Wong AM, Hergarden AC et al (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854-859 https://doi.org/10.1038/nature02980
- Fischler W, Kong P, Marella S and Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054-1057 https://doi.org/10.1038/nature06101
- Huckesfeld S, Schlegel P, Miroschnikow A et al (2021) Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. eLife 10, e65745
- Birkhead TR and Pizzari T (2002) Postcopulatory sexual selection. Nat Rev Genet 3, 262-273 https://doi.org/10.1038/nrg774
- Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT and Pitnick S (2010) Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328, 354-357 https://doi.org/10.1126/science.1187096
- Lee K-M, Daubnerova I, Isaac RE et al (2015) A neuronal pathway that controls sperm ejection and storage in female Drosophila. Curr Biol 25, 790-797 https://doi.org/10.1016/j.cub.2015.01.050
- Keene AC, Duboue ER, McDonald DM et al (2010) Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 20, 1209-1215 https://doi.org/10.1016/j.cub.2010.05.029
- Lin H-H, Kuang MC, Hossain I et al (2022) A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 602, 632-638 https://doi.org/10.1038/s41586-022-04408-7
- Charmandari E, Tsigos C and Chrousos G (2004) Endocrinology of the stress response. Annu Rev Physiol 67, 259-284 https://doi.org/10.1146/annurev.physiol.67.040403.120816