• Title/Summary/Keyword: Fluid secretion

Search Result 114, Processing Time 0.031 seconds

Roles of Gonadal Steroids on Exocrine Secretion of Isolated Perfused Rat Pancreas

  • Park, Hyung-Seo;Kim, Se-Hoon;Park, Hyoung-Jin;Lee, Mee-Young;Han, Young-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.217-221
    • /
    • 2003
  • To clarify the roles of gonadal steroids on pancreatic exocrine secretion, effects of progesterone and estradiol-$17{\beta}$ on spontaneous and secretagogue-induced exocrine response of isolated perfused rat pancreas were investigated. Intra-arterial infusion of progesterone resulted in significant increase of the spontaneous pancreatic fluid and amylase secretion dose-dependently. However, estradiol-$17{\beta}$ did not exert any influence on spontaneous pancreatic exocrine secretion. Exogenous secretin, cholecystokinin (CCK), and acetylcholine markedly stimulated pancreatic fluid and amylase secretion. Progesterone initially enhanced secretin-induced amylase secretion, but this stimulatory response declined thereafter to basal value. Moreover, secretin-induced fluid secretion was not affected by infusion of progesterone. Therefore, initial increase of secretion-induced amylase secretion by progesterone seems to be a non-specific action by washout effect of secretin. Estradiol-$17{\beta}$ failed to change the secretin-induced fluid and amylase secretion. Both progesterone and estradiol-$17{\beta}$ did not exert any influence on CCK-induced fluid and amylase secretion. Acetylcholine-induced exocrine secretion of isolated perfused pancreas also was not affected by intra-arterial infusion of progesterone or estradiol-$17{\beta}$. It is concluded from the above results that progesterone could enhance the spontaneous pancreatic fluid and amylase secretion of isolated perfused rat pancreas through non-genomic shortterm action, and that these effects could be masked by more potent stimulants such as secretin, CCK, and acetylcholine.

Effect of Follicular Fluid Proteins and Gonadotropins on Progesterone Secretion by Buffalo Granulosa Cells In vitro

  • Vinze, Mukesh;Sharma, M.K.;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1496-1500
    • /
    • 2004
  • In the mammalian ovary the follicular fluid contains proteins and peptides which play an important role in growth, development and maturation of oocytes. The gonadotropins and some other factors work synergistically and regulate ovarian functions. In the present study the effect of follicular fluid proteins (FFP) and gonadotropins on progesterone secretion by granulosa cells (GC) from buffalo ovary, was investigated during culture. The follicular fluid was collected from small (<5 mm), and medium (5-8 mm) follicles obtained from buffalo ovaries. The follicular fluid from medium follicles was fractionated with ammonium sulphate at 80% saturation. The precipitated protein fraction was further resolved in to minor (peaks I, III) and major (peak II) proteins using gel filtration (Sephadex G-200). The FFP from small follicles and major FFP (peak II) at a dose of 200 $\mu$g/well, significantly stimulated progesterone secretion by pooled GC (3${\times}10^{5}$ cells/2 ml medium/well). The minor FFP did not show any stimulatory effect. There was a significant increase in progesterone secretion by pooled GC in presence of FFP and LH (10 ng/well), however, FSH (20 ng/well) with FFP exhibited an inhibitory effect. The major FFP and gonadotropins were also studied for their effect on progesterone production by GC isolated from medium and large size follicles. The GC from medium follicles were more responsive to FSH and FFP whereas GC from large follicles exhibited enhanced progesterone secretion with LH and FFP. These results indicated that FFP have their own stimulatory effect and also act synergistically with gonadotropins. The significantly different response shown by GC, for steroid hormone secretion, is based on their stage of growth and differentiation. The purification and characterization of such steroidogenic proteins may help in elucidating their role in growth and differentiation of granulosa cells.

Changes of spontaneous pancreatic exocrine secretion during the estrous cycle in rats (흰쥐에서 발정주기에 따른 자발적인 췌장외분비의 변화)

  • Park, Hyung-seo;Lee, Tae-im;Kim, Se-hoon;Park, Hyoung-jin;yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.677-681
    • /
    • 2000
  • Since the role of female sexual hormones on pancreatic exocrine secretion was not fully understood, this study was investigated to clarify the difference of spontaneous pancreatic exocrine responses during the estrous cycle and the roles of ovarian hormones on pancreatic exocrine secretion in the anesthetized female rats. Pancreatic juice was collected from the sequential 15-min samples, and then fluid and protein secretion were measured from the collected samples. The stages of estrous cycle were defined by staining the vaginal smear. The spontaneous pancreatic fluid and protein secretion were significantly increased during the diestrus stage compare to the corresponding value during the estrus stage. In the ovariectomized rat, spontaneous pancreatic exocrine secretion was significantly decreased compare to the value of female rat during the diestrus stage and was restored by subcutaneous injection of progesterone (50 mg/kg). This results suggest that the spontaneous pancreatic exocrine secretion of female rat is fluctuated according to the estrous cycle and progesterone released from ovary could stimulate the spontaneous pancreatic exocrine secretion of female rat.

  • PDF

Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology

  • Park, Jong-Lyul;Park, Seong-Min;Kim, Jeong-Hwan;Lee, Han-Chul;Lee, Seung-Hwan;Woo, Kwang-Man;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2013
  • RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis.

Effects of ${\gamma}-Aminobutyric$ Acid on Intrinsic Cholinergic Action in Exocrine Secretion of Isolated, Perfused Rat Pancreas

  • Park, Yong-Deuk;Park, Hyung-Seo;Cui, Zheng-Yun;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • ${\gamma}$-Aminobutyric acid (GABA) has been reported to enhance exocrine secretion evoked not only by secretagogues but also by intrinsic neuronal excitation in the pancreas. The pancreas contains cholinergic neurons abundantly that exert a stimulatory role in exocrine secretion. This study was undertaken to examine effects of GABA on an action of cholinergic neurons in exocrine secretion of the pancreas. Intrinsic neurons were excited by electrical field stimulation (EFS; 15 V, 2 msec, 8 Hz, 45 min) in the isolated, perfused rat pancreas. Tetrodotoxin or atropine was used to block neuronal or cholinergic action. Acetylcholine was infused to mimic cholinergic excitation. GABA $(30{\mu}M)$ and muscimol $(10{\mu}M)$, given intra-arterially, did not change spontaneous secretion but enhanced cholecystokinin (CCK; 10 pM)-induced secretions of fluid and amylase. GABA (3, 10, $30{\mu}M$) further elevated EFS-evoked secretions of fluid and amylase dose-dependently. GABA (10, 30, $100{\mu}M$) also further increased acetylcholine $(5{\mu}M)$-induced secretions of fluid and amylase in a dose-dependent manner. Bicuculline $(10{\mu}M)$ effectively blocked the enhancing effects of GABA $(30{\mu}M)$ on the pancreatic secretions evoked by either EFS or CCK. Both atropine $(2{\mu}M)$ and tetrodotoxin $(1{\mu}M)$ markedly reduced the GABA $(10{\mu}M)$-enhanced EFS- or CCK-induced pancreatic secretions. The results indicate that GABA enhances intrinsic cholinergic neuronal action on exocrine secretion via the $GABA_A$ receptors in the rat pancreas.

The role of diuretic hormones (DHs) and their receptors in Drosophila

  • Gahbien Lee;Heejin Jang;Yangkyun Oh
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.209-215
    • /
    • 2023
  • Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrient-sensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems.

Identifiaction and Molecular Size of Zine-Binding Ligands in Pancreatic/Biliary Fluid of Rats

  • Kwun, In-Sook;Donald Oberleas
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.42-48
    • /
    • 1997
  • the exocrine pancreatic secretion is an important factor in the maintenance of zinc homeostasis. The daily pancreatic secretion of zinc into the gastrointestinal tract may be two or more times the daily dietary zinc intake. The objective of this study was to examine the distribution of proteins and zinc in pancreatic/biliary fluid following intraperitoneal {TEX}${65}^Zn${/TEX} injection into dietary prepared Sprague-Dawly rats. Distribution of zinc-binding protein in Sephadex G-75 subfractions showed a peak corresponding to the high molecular weight protein standard(<66kDa) in the pancreatic/biliary fluid. Zinc also was associated with the 29~35kDa mole-cular weight proteins. These are similar in size with zinc-containing enzymes, carboxypeptidase A and car-boxypeptidase B. A more remarkable small molecular weight fraction eluted beyond the 6.5kDa standard pro-tein peak. These results show the presence of small molecular weight compound in pancreatic/biliary fluid associated with zinc . These small molecular weight compounds may serve as zinc-binding ligands for the secretion of enogenous zinc into the duodenum. These findings suggest that these lignads may dissociate zinc in the duodenum thus making it vulnerable to complexation with phytate in the upper gastrointestinal tract rendering the zinc unavailable for reabsorption.

  • PDF

Physiological Factors Depressing Feed Intake and Saliva Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Ishii, Y.;Nagamine, I.;Shinjo, A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.60-69
    • /
    • 2007
  • Ruminants eating dry forage secrete large volumes of saliva which results in decreased plasma volume (hypovolemia) and the loss of $NaHCO_3$ from the blood. The present research investigated whether or not hypovolemia and the loss of $NaHCO_3$ from the blood in goats brought about by dry forage feeding actually depresses feed intake and saliva secretion, respectively. The present experiment consisted of three treatments (NI, ASI, MI). In the control treatment (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial parotid saliva was initiated 1 h before feeding and continued for the entire 2 h feeding period. In the MI treatment, iso-osmotic mannitol solution was infused. The NI treatment showed that hematocrit and plasma total protein concentration were increased due to decreased circulating plasma volume brought about by feeding. In the ASI treatment, the fluid and $NaHCO_3$ that were lost from the blood because of a feeding-induced acceleration of saliva secretion was replenished with an intravenous infusion of artificial parotid saliva. This replenishment lessened the levels of suppression on both feeding and parotid saliva secretion. When only the lost fluid was replenished with an intravenous infusion of iso-osmotic mannitol solution in the MI treatment, the degree of feeding suppression was lessened but the level of saliva secretion suppression was not affected. These results indicate that the marked suppression of feed intake during the initial stages of dry forage feeding was caused by a feeding-induced hypovolemia while the suppression of saliva secretion was brought about by the loss of $NaHCO_3$ from the blood due to increased saliva secretion during the initial stages of feeding.

Effect of superoxide anion in the regulation of artrial natriuretic peptide (ANP) secretion (심방이뇨호르몬의 분비조절에 있어서 superoxide anion의 영향)

  • Kang, Chang-won;Kim, Nam-soo;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Atrial Natriuretic Peptide(ANP) is a hormone with potent natriuretic, diuretic and relaxing properties of vascular smooth muscle. Specific chemical modulator responsible for the ANP secretion has not yet been found. Although atrial stretch of stretch-release is to be a major stimulus for the secretion of ANP, the precise mechano-molecular transduction mechanism responsible for its evoked secretion remains to be elucidated. It is interested to clarify the effect of superoxide anion in the stretch-induced ANP secretion. In order to investigate the effectg of $H_2O_2$ in the regulation of ANP secretion, a perfused model of left atrium of rats was used. The results obtained were as follows; 1. The ANP secretion and the extracellular fluid(ECF) translocation were accentuated by the effect of repetitive atrial distension-reduction volume at atrial pressure($4cmH_2O$). 2. The dilution curve showed to be in parallel between pure atriopeptin III (AP III) and perfusated buffer. 3. $H_2O_2(5{\times}10^{-4}M)$ accenturated a strectch-release induced increase of the ANP secretion. The amount of released ANP was significantly(p<0.01) increased. These results suggest that the superoxide anion may be involved in the regulatory mechanism of mechanically activated ANP release.

  • PDF