DOI QR코드

DOI QR Code

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems

분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안

  • Yongju Choi (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Wooram Lee (Institute of Construction and Environmental Engineering, Seoul National University)
  • 최용주 (서울대학교 건설환경공학부) ;
  • 이우람 (서울대학교 건설환경종합연구소)
  • Received : 2022.10.13
  • Accepted : 2022.12.21
  • Published : 2023.01.30

Abstract

We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

Keywords

Acknowledgement

이 논문은 저자가 집필한 한국물환경학회 이슈레터 Water4Future 2018년 12월호를 보완⋅재구성한 것입니다.

References

  1. Alhashim i, H. A. and Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis, Resources, Conservation and Recycling, 118, 13-26. https://doi.org/10.1016/j.resconrec.2016.11.016
  2. Alvarino, T., Garcia-Sanda, E., Gutierrez-Prada, I., Lema, J., Omil, F., and Suarez, S. (2020). A new decentralized biological treatment process based on activated carbon targeting organic micropollutant removal from hospital wastewaters, Environmental Science and Pollution Research, 27(2), 1214-1223. https://doi.org/10.1007/s11356-018-2670-2
  3. Barazesh, J. M., Hennebel, T., Jasper, J. T., and Sedlak, D. L. (2015). Modular advanced oxidation process enabled by cathodic hydrogen peroxide production, Environmental Science & Technology, 49(12), 7391-7399. https://doi.org/10.1021/acs.est.5b01254
  4. Bischel, H. N., Caduff, L., Schindelholz, S., Kohn, T., and Julian, T. R. (2019). Health risks for sanitation service workers along a container-based urine collection system and resource recovery value chain, Environmental Science & Technology, 53(12), 7055-7067. https://doi.org/10.1021/acs.est.9b01092
  5. Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., and Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Frontiers in Environmental Science, 6, 8.
  6. Cho, K., Kwon, D., and Hoffmann, M. R. (2014). Electrochemical treatment of human waste coupled with molecular hydrogen production, RSC Advances, 4(9), 4596-4608. https://doi.org/10.1039/C3RA46699J
  7. Choe, J. K., Bergquist, A. M., Jeong, S., Guest, J. S., Werth, C. J., and Strathmann, T. J. (2015). Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate, Water Research, 80, 267-280. https://doi.org/10.1016/j.watres.2015.05.007
  8. Choi, Y., Thompson, J. M., Cho, Y. M., Ismail, N. S., Hsieh, C. H., and Luthy, R. G. (2016). Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants, Journal of Hazardous Materials, 304, 352-359. https://doi.org/10.1016/j.jhazmat.2015.09.069
  9. Dong, H., Laguna, C. M., Liu, M. J., Guo, J., and Tarpeh, W. A. (2022). Electrified Ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine, Environmental Science & Technology, 56(22), 16134-16143. https://doi.org/10.1021/acs.est.2c03771
  10. Ebie, Y., Kondo, T., Kadoya, N., Mouri, M., Maruyama, O., Noritake, S., Inamori Y., and Xu, K. (2008). Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou, Water Science and Technology, 57(12), 1977-1981. https://doi.org/10.2166/wst.2008.337
  11. Eggimann, S., Mutzner, L., Wani, O., Schneider, M. Y., Spuhler, D., Moy de Vitry, M., Beutler, P., and Maurer, M. (2017). The potential of knowing more: A review of data-driven urban water management, Environmental Science & Technology, 51(5), 2538-2553. https://doi.org/10.1021/acs.est.6b04267
  12. Ferrari, F., Balcazar, J. L., Rodriguez-Roda, I., and Pijuan, M. (2019). Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining, Science of the Total Environment, 670, 993-1000. https://doi.org/10.1016/j.scitotenv.2019.03.218
  13. Hedin, N., Andersson, L., Bergstrom, L., and Yan, J. (2013). Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption, Applied Energy, 104, 418-433. https://doi.org/10.1016/j.apenergy.2012.11.034
  14. Hodges, B. C., Cates, E. L., and Kim, J. H. (2018). Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nature Nanotechnology, 13, 642-650. https://doi.org/10.1038/s41565-018-0216-x
  15. Hou, D., Jassby, D., Nerenberg, R., and Ren, Z. J. (2019). Hydrophobic gas transfer membranes for wastewater treatment and resource recovery, Environmental Science & Technology, 53, 11618-11635. https://doi.org/10.1021/acs.est.9b00902
  16. Housh, M. and Ostfeld, A. (2015). An integrated logit model for contamination event detection in water distribution systems, Water Research, 75, 210-223. https://doi.org/10.1016/j.watres.2015.02.016
  17. Jang, Y., Lee, W., Park, J., and Choi, Y. (2022). Recovery of ammonia from wastwater by liquid-liquid membrane contactor: A review, Membrane and Water Treatment, 13(3), 147-166. https://doi.org/10.12989/MWT.2022.13.3.147
  18. Kavvada, O., Tarpeh, W. A., Horvath, A., and Nelson, K. L. (2017). Life-cycle cost and environmental assessment of decentralized nitrogen recovery using ion exchange from source-separated urine through spatial modeling, Environmental Science & Technology, 51, 12061-12071. https://doi.org/10.1021/acs.est.7b02244
  19. Lambrou, T. P., Panayiotou, C. G., and Anastasiou, C. C. (2012). A low-cost system for real time monitoring and assessment of potable water quality at consumer sites, IEEE Sensors, Institute of Electrical and Electronics Engineers.
  20. Larsen, T. A. and Gujer, W. (2013). Implementation of source separation and decentralization in cities, Source Separation and Decentralization for Wastewater Management, Larsen, T. A., Udert, K. M., and Lienert, J. (eds.), IWA Publishing, London, UK., 135-150.
  21. Larsen, T. A., Hoffmann, S., Luthi, C., Truffer, B., and Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world, Science, 352(6288), 928-933. https://doi.org/10.1126/science.aad8641
  22. Lee, M. H., Kim, D. U., and Nam, B. H. (2010). Lessons from the september 21st heavy rain in Seoul area: Focusing on damage cases in Jung-gu, Seoul, Water for Future, 43(12), 38-47. [Korean Literature]
  23. Lee, W. and Choi, Y. (2022). Facile preparation of robust anti-wetting membrane by simple two-step FeOOH and fluorosilane membrane modification, Chemical Engineering Journal, 442, 136112.
  24. Lee, W., An, S., and Choi, Y. (2021). Ammonia harvesting via membrane gas extraction at moderately alkaline pH: A step toward net-profitable nitrogen recovery from domestic wastewater, Chemical Engineering Journal, 405, 126662.
  25. Li, F., Behrendt, J., Wichmann, K., and Otterpohl, R. (2008). Resources and nutrients oriented greywater treatment for non-potable reuses, Water Science and Technology, 57(12), 1901-1907. https://doi.org/10.2166/wst.2008.601
  26. Libralato, G., Ghirardini, A. V., and Avezzu, F. (2012). To centralise or decentralise: An overview of the most recent trends in wasterwater treatment management, Journal of Environmental Management, 94(1), 61-68. https://doi.org/10.1016/j.jenvman.2011.07.010
  27. Loeb, S. K., Alvarez, P. J. J., Brame, J. A., Cates, E. L., Choi, W., Crittenden,. J., Dionysiou, D. D., Li, Q., Li-Puma, G., Quan, X., Sedlak, D. L., Waite, T. D., Westerhoff, P., and Kim, J. H. (2019) The technology horizon for photocatalytic water treatment: Sunrise or sunset?, Environmental Science & Technology, 53(6), 2937-2947. https://doi.org/10.1021/acs.est.8b05041
  28. Lykins, B. W., Clark, R. M., and Goodrich, J. A. (1992). Types of POU/POE devices, point-of-use/point-of-entry for drinking water treatment, Lykins, B. W., Clark, R. M., and Goodrich, J. A. (eds), CRC Press.
  29. Mobile Area Water and Sewer System. (2015). Integration of decentralized wastewater management concepts Into an urban "Centralized" infrastructure in mobile, Alabama (USEPA National Decentralized Wastewater Demonstration Project), https://www.epa.gov/septic/integration-decentralized-wastewater-management-concepts-urban-centralized-infrastructure.
  30. Newman, J. P., Dandy, G. C., and Maier, H. R. (2014). Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization, Water Resources Research, 50, 7915-7938. https://doi.org/10.1002/2013WR015233
  31. Polshettiwar, V. and Varma, R. S. (2010). Green chemistry by nano-catalysis, Green Chemistry, 12, 743-754. https://doi.org/10.1039/b921171c
  32. Ray, H., Perreault, F., and Boyer, T. H. (2020). Ammonia recovery from hydrolyzed human urine by forward osmosis with acidified draw solution, Environmental Science & Technology, 54(18), 11556-11565. https://doi.org/10.1021/acs.est.0c02751
  33. Storey, M. V., van der Gaag, B., and Burns, B. P. (2011). Advances in on-line drinking water quality monitoring and early warning systems, Water Research, 45, 741-747. https://doi.org/10.1016/j.watres.2010.08.049
  34. Tarpeh, W. A., Udert, K. M., and Nelson, K. L. (2017). Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine, Environmental Science & Technology, 51(4), 2373-2381. https://doi.org/10.1021/acs.est.6b05816
  35. Tchobanoglous, G. and Leverenz, H. (2013). The rationale for decentralization of wastewater infrastructure, source separation and decentralization for wastewater management, Larsen, T. A., Udert, K. M., Lienert, J. (eds.), IWA Publishing, London, UK., 101-115.
  36. Tchobanoglous, G., Ruppe, L., Leverenz, H., and Darby, J. (2004). Decentralized wastewater management: Challenges and opportunities for the twenty-first century, Water Science and Technology: Water Supply, 4(1), 95-102. https://doi.org/10.2166/ws.2004.0011
  37. Tran, S. H., Dang, H. T. T., Dao, D. A., Nguyen, V. A., Nguyen, L. T., and Han, M. (2021). On-site rainwater harvesting and treatment for drinking water supply: Assessment of cost and technical issues, Environmental and Energy Management, 28, 11928-11941.  https://doi.org/10.1007/s11356-020-07977-0
  38. Tsegaye, S., Missimer, T. M., Kim, J. Y., and Hock, J. (2020). A clustered, decentralized approach to urban water management, Water, 12(1), 185.
  39. Udert, K. M., Larsen, T. A., and Gujer, W. (2003). Biologically induced precipitation in urine-collecting systems, Water Science and Technology: Water Supply, 3(3), 71-78. https://doi.org/10.2166/ws.2003.0010
  40. Wu, J., Cao, M., Tong, D., Finkelstein, Z., and Hoek, E. M. V. (2021). A critical review of point-of-use drinking water treatment in the United States, npj Clean Water, 4, 40.
  41. Yang, L., He, L., Xue, J., Ma, Y., Shi, Y., Wu, L., and Zhang, Z. (2020). UV/SO32- based advanced reduction processes of aqueous contaminants: Current status and prospects, Chemical Engineering Journal, 397, 125412.
  42. Zhang, J., Xie, M., Tong, X., Liu, S., Qu, D., and Xiao, S. (2020). Recovery of ammonium nitrogen from human urine by an open-loop hollow fiber membrane contactor, Separation and Purification Technology, 239, 116579.
  43. Zhang, Y., Wang, H., Li, Y., Wang, B., Huang, J., Deng, S., Yu, G., and Wang, Y. (2020). Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment, Water Research, 183, 116115.
  44. Zodrow, K. R., Li, Q., Buono, R. M., Chen, W., Daigger, G., Duenas-Osorio, L., Elimelech, M., Huang, X., Jiang, G., Kim, K. H., Logan, B. E., Sedlak, D. L., Westerhoff, P., and Alvarez, P. J. J. (2017). Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security, Environmental Science & Technology, (51)18, 10274-10281.  https://doi.org/10.1021/acs.est.7b01679