DOI QR코드

DOI QR Code

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Sakiru Olarewaju Olagunju (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Ruslan Khamitov (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Alfrendo Satyanaga (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Jong Kim (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Sung-Woo Moon (Department of Civil and Environmental Engineering, Nazarbayev University)
  • 투고 : 2022.11.22
  • 심사 : 2023.03.03
  • 발행 : 2023.04.25

초록

Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

키워드

과제정보

This research was funded by the Nazarbayev University, Collaborative Research Project (CRP) Grant No. 11022021CRP1508 and Faculty Development Competitive Research Grant Program (FDCRGP) Grant No. 20122022FD4115. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of Nazarbayev University.

참고문헌

  1. Airey, D. (1993), "Triaxial testing of naturally cemented carbonate soil", J. Geotech. Eng., 119(9), 1379-1398. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379).
  2. Amini, Y. and Hamidi, A. (2014), "Triaxial shear behavior of a cement-treated sand-gravel mixture", J. Rock Mech. Geotech. Eng., 6(5), 455-465. https://doi.org/10.1016/j.jrmge.2014.07.006.
  3. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  4. Asghari, E., Toll, D. and Haeri, S. (2003), "Triaxial behaviour of a cemented gravely sand, Tehran alluvium", Geotech. Geol. Eng., 21(1), 1-28. https://doi.org/10.1023/A:1022934624666.
  5. Assel, J., Sagidullina, N., Kim, J. and Moon, S.W. (2020), "Effect of cyclic freezing-thawing on strength and durability of sand stabilized with CSA cement", Proceedings of the 2020 World Congress on Advances in Civil, Environmental, & Materials Research,
  6. ASTM/D698 (2012), Standard test methods for laboratory compaction characteristics of soil using standard effort, ASTM D698. https://doi.org/10.1520/D0698-12R21
  7. ASTM/D7181-20 (2015), Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. ASTM International. https://doi.org/10.1520/D7181-20
  8. Bazarbekova, A., Shon, C.S., Kissambinova, A., Kim, J.R., Zhang, D. and Moon, S.W. (2021), "Potential of limestone powder to improve the stabilization of sulfate-contained saline soil", Proceedings of the IOP Conference Series: Materials Science and Engineering.
  9. Bisserik, A., Kim, J., Satyanaga, A. and Moon, S.W. (2021), "Characterization of CSA cemented-treated sands via discrete element method", Proceedings of the AIP Conference Proceedings.
  10. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
  11. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj2015-0475.
  12. Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S. (1981), "Cemented sands under static loading", J. Geotech. Eng. Division, 107(6), 799-817. https://doi.org/10.1061/AJGEB6.0001152.
  13. Consoli, N., Schnaid, F., Prietto, P. and Rohlfes, Jr. J. (1996), "Engineering properties of residual soil-cement mixtures", Proceedings of the 2nd Int. Conf. on Ground Improvement Geosystems: Grouting and Deep Mixing.
  14. Ding, M., Zhang, F., Ling, X. and Lin, B. (2018), "Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay", Cold Reg. Sci. Technol., 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004.
  15. Gartner, E. (2004), "Industrially interesting approaches to "low-CO2" cements", Cement Concrete Res., 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
  16. Ghiyas, S.M.R. and Bagheripour, M.H. (2020), "Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation", Geomech. Eng., 20(3), 207-220. https://doi.org/10.12989/gae.2020.20.3.207.
  17. Haeri, S.M., Hamidi, A. and Tabatabaee, N. (2005), "The effect of gypsum cementation on the mechanical behavior of gravely sands", Geotech. Test. J., 28(4), 380-390. https://doi.org/10.1520/GTJ12574
  18. Juenger, M., Winnefeld, F., Provis, J.L. and Ideker, J. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
  19. Jumassultan, A., Sagidullina, N., Kim, J., Ku, T. and Moon, S.W. (2021), "Performance of cement-stabilized sand subjected to freeze-thaw cycles", Geomech. Eng., 25(1), 41-48. https://doi.org/10.12989/gae.2021.25.1.041.
  20. Kazmi, Z.A. (2020), "Improvement in shear strength characteristics of desert sand using shredded plastic waste", Geomech. Eng., 20(6), 497-503. https://doi.org/10.12989/gae.2020.20.6.497.
  21. Lee1a, S., Im, J., Cho, G. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  22. Mahedi, M., Cetin, B. and White, D.J. (2020), Cement, lime, and fly ashes in stabilizing expansive soils: performance evaluation and comparison", J. Mater. Civil Eng., 32(7), 04020177. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003260.
  23. Marri, A., Wanatowski, D. and Yu, H. (2012), "Drained behaviour of cemented sand in high pressure triaxial compression tests", Geomech. Geoeng., 7(3), 159-174. https://doi.org/10.1080/17486025.2012.663938.
  24. Moon, S.-W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granular Matter., 22(1), 1-13. https://doi.org/10.1007/s10035-019-0975-6.
  25. Pooni, J., Robert, D., Giustozzi, F., Setunge, S., Xie, Y. and Xia, J. (2020), "Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils", Constr. Build. Mater., 260, 120433. https://doi.org/10.1016/j.conbuildmat.2020.120433.
  26. Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022a), "Influence of freeze-thaw cycles on physical and mechanical properties of cement-treated silty sand", Sustainability, 14(12), 7000. https://doi.org/10.3390/su14127000.
  27. Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022b), "Stabilization of silty sand with CSA cement under freeze-thaw cycles", Proceeding of the 10th International Conference on Physical Modelling in Geotechnics (ICPMG).
  28. Sargent, P., Hughes, P. and Rouainia, M. (2016), "A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing", Soils Found., 56(6), 1021-1034. https://doi.org/10.1016/j.sandf.2016.11.007
  29. Schnaid, F., Prietto, P.D. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
  30. Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.
  31. Singh, R., Ray, D., Mehrotra, A. and Afaque Khan, M. (2018), "A review paper on comparative study of soil stabilization with widely used admixtures like lime, cement, flyash and bitumen emulsion", Int. J. Eng. Trends Technol., 58(2), 96-99. https://doi.org/10.14445/22315381/IJETT-V58P218.
  32. Subramanian, S., Khan, Q. and Ku, T. (2019), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Constr. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.
  33. Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA-treated sand for geotechnical application: microstructure analysis and rapid strength development", J. Mater. Civil Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523.
  34. Ud-din, S., Marri, A. and Wanatowski, D. (2011), "Effect of high confining pressure on the behaviour of fibre reinforced sand", Geotech. Eng. J. SEAGS & AGSSEA, 42(4), 69-76.
  35. Ukrainczyk, N., Frankoviae Mihelj, N. and Sipusic, J. (2013), "Calcium sulfoaluminate eco-cement from industrial waste", Chem. Biochem. Eng. Q., 27(1), 83-93.
  36. Vinoth, G., Moon, S.W., Kim, J. and Ku, T. (2018), "Effect of fine particles on cement treated sand", Proceedings of China-Europe Conference on Geotechnical Engineering.