Acknowledgement
This research was funded by the Nazarbayev University, Collaborative Research Project (CRP) Grant No. 11022021CRP1508 and Faculty Development Competitive Research Grant Program (FDCRGP) Grant No. 20122022FD4115. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of Nazarbayev University.
References
- Airey, D. (1993), "Triaxial testing of naturally cemented carbonate soil", J. Geotech. Eng., 119(9), 1379-1398. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379).
- Amini, Y. and Hamidi, A. (2014), "Triaxial shear behavior of a cement-treated sand-gravel mixture", J. Rock Mech. Geotech. Eng., 6(5), 455-465. https://doi.org/10.1016/j.jrmge.2014.07.006.
- Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
- Asghari, E., Toll, D. and Haeri, S. (2003), "Triaxial behaviour of a cemented gravely sand, Tehran alluvium", Geotech. Geol. Eng., 21(1), 1-28. https://doi.org/10.1023/A:1022934624666.
- Assel, J., Sagidullina, N., Kim, J. and Moon, S.W. (2020), "Effect of cyclic freezing-thawing on strength and durability of sand stabilized with CSA cement", Proceedings of the 2020 World Congress on Advances in Civil, Environmental, & Materials Research,
- ASTM/D698 (2012), Standard test methods for laboratory compaction characteristics of soil using standard effort, ASTM D698. https://doi.org/10.1520/D0698-12R21
- ASTM/D7181-20 (2015), Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. ASTM International. https://doi.org/10.1520/D7181-20
- Bazarbekova, A., Shon, C.S., Kissambinova, A., Kim, J.R., Zhang, D. and Moon, S.W. (2021), "Potential of limestone powder to improve the stabilization of sulfate-contained saline soil", Proceedings of the IOP Conference Series: Materials Science and Engineering.
- Bisserik, A., Kim, J., Satyanaga, A. and Moon, S.W. (2021), "Characterization of CSA cemented-treated sands via discrete element method", Proceedings of the AIP Conference Proceedings.
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj2015-0475.
- Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S. (1981), "Cemented sands under static loading", J. Geotech. Eng. Division, 107(6), 799-817. https://doi.org/10.1061/AJGEB6.0001152.
- Consoli, N., Schnaid, F., Prietto, P. and Rohlfes, Jr. J. (1996), "Engineering properties of residual soil-cement mixtures", Proceedings of the 2nd Int. Conf. on Ground Improvement Geosystems: Grouting and Deep Mixing.
- Ding, M., Zhang, F., Ling, X. and Lin, B. (2018), "Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay", Cold Reg. Sci. Technol., 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004.
- Gartner, E. (2004), "Industrially interesting approaches to "low-CO2" cements", Cement Concrete Res., 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
- Ghiyas, S.M.R. and Bagheripour, M.H. (2020), "Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation", Geomech. Eng., 20(3), 207-220. https://doi.org/10.12989/gae.2020.20.3.207.
- Haeri, S.M., Hamidi, A. and Tabatabaee, N. (2005), "The effect of gypsum cementation on the mechanical behavior of gravely sands", Geotech. Test. J., 28(4), 380-390. https://doi.org/10.1520/GTJ12574
- Juenger, M., Winnefeld, F., Provis, J.L. and Ideker, J. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
- Jumassultan, A., Sagidullina, N., Kim, J., Ku, T. and Moon, S.W. (2021), "Performance of cement-stabilized sand subjected to freeze-thaw cycles", Geomech. Eng., 25(1), 41-48. https://doi.org/10.12989/gae.2021.25.1.041.
- Kazmi, Z.A. (2020), "Improvement in shear strength characteristics of desert sand using shredded plastic waste", Geomech. Eng., 20(6), 497-503. https://doi.org/10.12989/gae.2020.20.6.497.
- Lee1a, S., Im, J., Cho, G. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
- Mahedi, M., Cetin, B. and White, D.J. (2020), Cement, lime, and fly ashes in stabilizing expansive soils: performance evaluation and comparison", J. Mater. Civil Eng., 32(7), 04020177. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003260.
- Marri, A., Wanatowski, D. and Yu, H. (2012), "Drained behaviour of cemented sand in high pressure triaxial compression tests", Geomech. Geoeng., 7(3), 159-174. https://doi.org/10.1080/17486025.2012.663938.
- Moon, S.-W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granular Matter., 22(1), 1-13. https://doi.org/10.1007/s10035-019-0975-6.
- Pooni, J., Robert, D., Giustozzi, F., Setunge, S., Xie, Y. and Xia, J. (2020), "Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils", Constr. Build. Mater., 260, 120433. https://doi.org/10.1016/j.conbuildmat.2020.120433.
- Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022a), "Influence of freeze-thaw cycles on physical and mechanical properties of cement-treated silty sand", Sustainability, 14(12), 7000. https://doi.org/10.3390/su14127000.
- Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022b), "Stabilization of silty sand with CSA cement under freeze-thaw cycles", Proceeding of the 10th International Conference on Physical Modelling in Geotechnics (ICPMG).
- Sargent, P., Hughes, P. and Rouainia, M. (2016), "A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing", Soils Found., 56(6), 1021-1034. https://doi.org/10.1016/j.sandf.2016.11.007
- Schnaid, F., Prietto, P.D. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
- Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.
- Singh, R., Ray, D., Mehrotra, A. and Afaque Khan, M. (2018), "A review paper on comparative study of soil stabilization with widely used admixtures like lime, cement, flyash and bitumen emulsion", Int. J. Eng. Trends Technol., 58(2), 96-99. https://doi.org/10.14445/22315381/IJETT-V58P218.
- Subramanian, S., Khan, Q. and Ku, T. (2019), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Constr. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.
- Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA-treated sand for geotechnical application: microstructure analysis and rapid strength development", J. Mater. Civil Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523.
- Ud-din, S., Marri, A. and Wanatowski, D. (2011), "Effect of high confining pressure on the behaviour of fibre reinforced sand", Geotech. Eng. J. SEAGS & AGSSEA, 42(4), 69-76.
- Ukrainczyk, N., Frankoviae Mihelj, N. and Sipusic, J. (2013), "Calcium sulfoaluminate eco-cement from industrial waste", Chem. Biochem. Eng. Q., 27(1), 83-93.
- Vinoth, G., Moon, S.W., Kim, J. and Ku, T. (2018), "Effect of fine particles on cement treated sand", Proceedings of China-Europe Conference on Geotechnical Engineering.