DOI QR코드

DOI QR Code

Continuous-phase Lens Design via Binary Dielectric Annular Nanoslits

  • Woongbu Na (Electrical and Electronic Convergence Department, Hongik University) ;
  • Seung-Yeol Lee (School of Electrical and Electronic Engineering, Kyungpook National University) ;
  • Hyuntai Kim (Electrical and Electronic Convergence Department, Hongik University)
  • Received : 2023.02.10
  • Accepted : 2023.04.12
  • Published : 2023.06.25

Abstract

In this study, a binary dielectric annular nanoring lens is proposed to cover the full range of optical phase. The lens is designed numerically, based on the effective-medium theory. The performance of the proposed lens is verified for the cases of single-focal and dual-focal lenses. The efficiency of a single-focal lens is improved by 17.19% compared to a binary dielectric lens, and that of a dual-focal lens shows enhancements of 13.11% and 49.41% at the two focal points. This lens design can be applied to other optical components with axially symmetric structures.

Keywords

Acknowledgement

National Research Foundation of Korea (NRF) (2021R1F1A1052193, 2022R1F1A1062278); 2023 Hongik University Research Fund.

References

  1. K. Itoh and Y. Ozeki, "Ultrafast laser microfabrication of photonic devices inside glass," in Optical Fabrication and Testing 2010 (Optica Publishing Group, 2010), paper OTuC1.
  2. S Quabis, R Dorn, M Eberler, O Glockl, and G Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). https://doi.org/10.1016/S0030-4018(99)00729-4
  3. H. Kim and E. T. F. Rogers, "Sub-wavelength annular-slit-assisted superoscillatory lens for longitudinally-polarized superresolution focusing," Sci. Rep. 10, 1328 (2020).
  4. P. A. Penz, "Voltage-induced vorticity and optical focusing in liquid crystals," Phys. Rev. Lett. 24, 1405 (1970).
  5. T. Grosjean, D. Courjon, and C. Bainier, "Smallest lithographic marks generated by optical focusing systems," Opt. Lett. 32, 976-978 (2007). https://doi.org/10.1364/OL.32.000976
  6. S. A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60, 1168-1177 (1970). https://doi.org/10.1364/JOSA.60.001168
  7. G. Shuili, "Investigations and applications of advanced laser processing technology," in Laser and Tera-Hertz Science and Technology (Optica Publishing Group, 2012), paper MTh2A.2.
  8. E. Colombini, "Design of thin-film Luneburg lenses for maximum focal length control," Appl. Opt. 20, 3589-3593 (1981). https://doi.org/10.1364/AO.20.003589
  9. L. d'Auria, J. P. Huignard, A. M. Roy, and E. Spitz, "Photolithographic fabrication of thin film lenses." Opt. Commun. 5, 232-235 (1972). https://doi.org/10.1016/0030-4018(72)90086-7
  10. Y. Eliezer and A. Bahabad, "Super-oscillating airy pattern" ACS Photonics 3, 1053-1059 (2016). https://doi.org/10.1021/acsphotonics.6b00123
  11. D. Black and C. Nguyen, "Metallic zone plates for sectoral horns," in Proc. IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010) (Orlando, FL, USA, Jul. 11-16, 1999), pp. 730-733.
  12. H. Kim, J. Kim, H. An, Y. Lee, G.-Y. Lee, J. Na, K. Park, S. Lee, S.-Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017). https://doi.org/10.1364/OE.25.030290
  13. K. Park and H. Kim, "Sub-wavelength slit-assisted binary metallic lens design for effective multifocusing via phase superposition method," IEEE Access 8, 115196-115201 (2020). https://doi.org/10.1109/ACCESS.2020.3003935
  14. A. L. Gonzalez and C. Noguez, "Influence of morphology on the optical properties of metal nanoparticles," J. Comput. Theor. Nanosci. 4, 231-238 (2007). https://doi.org/10.1166/jctn.2007.2309
  15. H. Kim, J. Kim, H. An, K. Park, and Y. Jeong, "Subwavelength ring assisted Fresnel zone plate for radially polarized light focusing," in Conference on Lasers and Electro-Optics/Pacific Rim (Optica Publishing Group, 2017), paper s2530.
  16. G. H. Yuan, E. T. F. Rogers, and N. I. Zheludev, "Achromatic super-oscillatory lenses with sub-wavelength focusing," Light: Sci. Appl. 6, e17036 (2017).
  17. G. Yuan, K. S. Rogers, E. T. F. Rogers, and N. I. Zheludev, "Far-field superoscillatory metamaterial superlens," Phy. Rev. Appl. 11, 064016 (2019).
  18. S. Park, B. Park, S. Nam, S. Yun, S. K. Park, S. Mun, J. M. Lim, Y. Ryu, S. H. Song, and K.-U. Kyung, "Electrically tunable binary phase Fresnel lens based on a dielectric elastomer actuator," Op. Express 25, 23801-23808 (2017). https://doi.org/10.1364/OE.25.023801
  19. K. Miyamoto, "The phase Fresnel lens," J. Opt. Soc. Am. 51, 17-20 (1961). https://doi.org/10.1364/JOSA.51.000017
  20. A. Davis and F. Kuhnlenz, "Optical design using Fresnel lenses: Basic principles and some practical examples," Optik & Photonik 2, 52-55 (2007).
  21. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nat. Nanotechnol. 10, 937-943
  22. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.- M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nat. Nanotechnol. 13, 227-232 (2018). https://doi.org/10.1038/s41565-017-0052-4
  23. T. Wu, X. Zhang, Q. Xu, E. Plum, K. Chen, Y. Xu, Y. Lu, H. Zhang, Z. Zhang, X. Chen, G. Ren, L. Niu, Z. Tian, J. Han, and W. Zhang, "Dielectric metasurfaces for complete control of phase, amplitude, and polarization," Adv. Opt. Mater. 10, 2101223 (2022).
  24. C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993). https://doi.org/10.1364/JOSAA.10.002217
  25. H. Kim and S.-Y. Lee, "Optical phase properties of small numbers of nanoslits and an application for higher-efficiency Fresnel zone plates," Curr. Opt. Photonics 3, 285-291 (2019).
  26. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, USA, 2005).
  27. C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kroger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, "Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon," AIP Adv. 5, 067168
  28. M. R. Vogt, "Development of physical models for the simulation of optical properties of solar cell modules," Ph.D. dissertation, Technische Informationsbibliothek (TIB) (2016).
  29. Z. Zhao, M. Pu, H. Gao, J. Jin, X. Li, X. Ma, Y. Wang, P. Gao, and X. Luo, "Multispectral optical metasurfaces enabled by achromatic phase transition," Sci. Rep. 5, 15781
  30. T. Liu, J. Tan, J. Liu, and H. Wang, "Modulation of a super-Gaussian optical needle with high-NA Fresnel zone plate," Opt. Lett. 38, 2742-2745 (2013). https://doi.org/10.1364/OL.38.002742
  31. J. Kim, H. Kim, G.-Y. Lee, J. Kim, B. Lee, and Y. Jeong, "Numerical and experimental study on multi-focal metallic Fresnel zone plates designed by the phase selection rule via virtual point sources," Appl. Sci. 8, 449 (2018).
  32. M.-K. Park, H. J. Lee, J.-S. Park, M. Kim, J. M. Bae, I. Mahmud, and H.-R. Kim, "Design and fabrication of multifocusing microlens array with different numerical apertures by using thermal reflow method," J. Opt. Soc. Korea 18, 71-77 (2014). https://doi.org/10.3807/JOSK.2014.18.1.071
  33. W. Wang, Z. Guo, K. Zhou, Y. Sun, F. Shen, Y. Li, S. Qu, and S. Liu, "Polarization-independent longitudinal multi-focusing metalens," Opt. Express 23, 29855-29866 (2015).  https://doi.org/10.1364/OE.23.029855