• Title/Summary/Keyword: Lens system design

Search Result 396, Processing Time 0.027 seconds

Zoom Lens Design for a 10x Slim Camera using Successive Procedures

  • Park, Sung-Chan;Lee, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • This study presents a new design method for a zoom lens, in which real lens groups are designed successively to combine to form a lens modules zoom system. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.2 to 39.9 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. After obtaining the lens module zoom system, the real lens groups are successively, not separately, designed to get a zoom lens system. Compared to the separately designed real lens groups, this approach can give a better starting zoom lens and save time. The successively designed groups result in a zoom system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a compact zoom system with a depth of 12 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a mobile zoom camera having high zoom ratio of 10x.

Design of an 8x Four-group Inner-focus Zoom System Using a Focus Tunable Lens

  • Lee, Daye;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.283-290
    • /
    • 2016
  • This study presents an 8x four-group inner-focus zoom lens with one-moving group for a compact camera by use of a focus tunable lens (FTL). In the initial design stage, we obtained the powers of lens groups by paraxial design based on thin lens theory, and then set up the zoom system composed of four lens modules. Instead of numerically analytic analysis for the zoom locus, we suggest simple analysis for that using lens modules optimized. After replacing four groups with equivalent thick lens modules, the power of the fourth group, which includes a focus tunable lens, is designed to be changed to fix the image plane at all positions. From this design process, we can realize an 8x four-group zoom system having one moving group by employing a focus tunable lens. The final designed zoom lens has focal lengths of 4 mm to 32 mm and apertures of F/3.5 to F/4.5 at wide and tele positions, respectively.

Tolerance Analysis and Design Improvement of a Lens System for Mobile Phone Camera (휴대폰용 카메라 모듈의 렌즈 시스템에 대한 공차 해석 및 설계 개선에 관한 연구)

  • Jung, Sang-Jin;Choi, Byung-Lyul;Choi, Dong-Hoon;Kim, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1063-1068
    • /
    • 2008
  • A lens system of a camera module for mobile phones is comprised of the composition and design of various shapes of lens. To improve responses such as the modular transfer function (MTF), a lens system should always be constructed by considering uncertainty that can be caused by manufacturing and assembly error. In this study, tolerance optimization using the Latin Hypercube Sampling (LHS) technique is performed. In order to reduce the computational burden of the tolerance optimization process and decrease the influence from numerical noise effectively, we use the Progressive Quadratic Response Surface Modeling (PQRSM), which is one of Sequential Approximate Optimization (SAO) techniques. Using this method, we achieved optimal tolerance for each lens and obtained reliability for satisfying user‘s requirements. In addition, through the design process the manufacturing and assembly cost of a lens system was reduced.

  • PDF

Aspherical Lens Design and Development of Spherical Aberration Measuring System by use of Spherical Aberration (구면 수차를 이용한 비구면 렌즈의 설계와 수차 측정 장치 개발)

  • Park, Kyu-Yeol;Kim, Han-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.175-180
    • /
    • 2007
  • In this paper, an aberration free aspherical lens is designed and machined by new design method and the spherical aberration measuring system is developed. It confirmed the propriety of new design method by measuring optical characteristics of machined lens with the new measuring system. The system could measure a spherical aberration quantitatively by using CCD camera, laser, collimator and so on.

Robust Optimization of a Lens System for a Mobile Phone Camera (휴대폰 카메라용 렌즈 시스템의 강건최적설계)

  • Jung, Sang-Jin;Min, Jun-Hong;Choi, Dong-Hoon;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.325-332
    • /
    • 2010
  • A lens system for mobile phone cameras is comprised of various lenses and designed so as to satisfy design requirements for responses such as a modular transfer function (MTF). However, it is difficult to manufacture and assemble camera modules to maintain the same performance compared with the designed camera modules, because of uncertainty. We should always design a lens system by considering uncertainty that can be caused by errors in the manufacturing and assembly process of mobile phone cameras. The robust optimization offers tools of making robust decisions with the consideration of design parameters, uncontrollable parameters, and the variance of the system. Using an efficient reliability analysis method and an optimization algorithm, we obtained robust optimization results that maximize the mean of MTF and minimize the standard deviation and proposed a new robust design process for a lens system.

Compact Zoom Lens Design for a 5x Mobile Camera Using Prism

  • Park, Sung-Chan;Lee, Sang-Hun;Kim, Jong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.206-212
    • /
    • 2009
  • This study presents the compact zoom lens with a zoom ratio of 5x for a mobile camera by using a prism. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.4 to 22.0 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. We separately designed a real lens for each group and then combined them to establish an actual zoom system. The combination of the separately designed groups results in a system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a more compact zoom system with a depth of 8 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a slim mobile zoom camera having high zoom ratio of 5x.

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Design of a Condenser Lens System using a Thin Lens Combination (얇은 렌즈 조합을 이용한 집속 렌즈 시스템 설계)

  • Lim, Sun-Jong;Choi, Ji-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.517-522
    • /
    • 2011
  • Most of SEM is double condenser lens system. Two condenser lenses are required to provide the high demagnification ratios necessary for forming nanometer probes. The thin lens concept provides a highly useful basis for preliminary calculations in a broad range of situations. It is an easy way to understand the electron beam paths in column. Demagnification is easily calculated by this method. In this paper, we present design processes for condenser lens's demagnification by using thin lens combination model. Also, we verify the reliability of our design processes by comparing the modeled demagnification with these of corrected condenser lens.

Generalized lens group conversion to their equivalent lenses (렌즈군의 일반화된 등가렌즈 변환)

  • 이종웅;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.251-257
    • /
    • 1998
  • The equivalent lens conversion is extended to lens group conversion, and the more generalized conversion method is developed. The new conversion method can be used for hte direct thick-to-thick lens conversion. By using the equivalent lens conversion, a thin lens system can be converted into various thick lens system which have different axial thicknesses, but those converted lens systems have identical paraxial property and similar aberration characteristic. For an example, the equivalent lens conversion technique is applied to modification of a thelephoto lens design. The axial thicknesses of the front group elements of the system are reduced to 75% of their original values. The modified design by using the equivalent lens conversion has same focal length with original, and it has smaller aberration changes than the other design of which axial thicknesses are changed only.

  • PDF