DOI QR코드

DOI QR Code

Prediction of calcium leaching resistance of fly ash blended cement composites using artificial neural network

  • Yujin Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Seunghoon Seo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Ilhwan You (Department of Rural Construction Engineering, Jeonbuk National University) ;
  • Tae Sup Yun (School of Civil and Environmental Engineering, Yonsei Universitiy) ;
  • Goangseup Zi (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2022.12.24
  • 심사 : 2023.02.18
  • 발행 : 2023.04.25

초록

Calcium leaching is one of the main deterioration factors in concrete structures contact with water, such as dams, water treatment structures, and radioactive waste structures. It causes a porous microstructure and may be coupled with various harmful factors resulting in mechanical degradation of concrete. Several numerical modeling studies focused on the calcium leaching depth prediction. However, these required a lot of cost and time for many experiments and analyses. This study presents an artificial neural network (ANN) approach to predict the leaching depth quickly and accurately. Totally 132 experimental data are collected for model training and validation. An optimal ANN model was proposed by ANN topology. Results indicate that the model can be applied to estimate the calcium leaching depth, showing the determination coefficient of 0.91. It might be used as a simulation tool for engineering problems focused on durability.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

참고문헌

  1. Bello, I., Zoph, B., Vasudevan, V. and Le, Q.V. (2017), "Neural optimizer search with reinforcement learning", International Conference on Machine Learning PMLR, Sydney, Australia, August.
  2. Bharati, S., Podder, P. and Mondal, M.R.H. (2020), "Diagnosis of polycystic ovary syndrome using machine learning algorithms", 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, June.
  3. Chen, Z., Lin, J., Sagoe-Crentsil, K. and Duan, W. (2022), "Development of hybrid machine learning-based carbonation models with weighting function", Constr. Build. Mater., 321, 126359. https://doi.org/10.1016/j.conbuildmat.2022.126359.
  4. Choi, Y.S. and Yang, E.I. (2013), "Effect of calcium leaching on the pore structure, strength, and chloride penetration resistance in concrete specimens", Nucl. Eng. Des., 259, 126-136. https://doi.org/10.1016/j.nucengdes.2013.02.049.
  5. Datta, L. (2020), "A survey on activation functions and their relation with xavier and he normal initialization", arXiv preprint arXiv, 2004, 06632. https://doi.org/10.48550/arXiv.2004.06632.
  6. De Larrard, T., Benboudjema, F., Colliat, J.B., Torrenti, J.M. and Deleruyelle, F. (2010), "Concrete calcium leaching at variable temperature: Experimental data and numerical model inverse identification", Comput. Mater. Sci., 49(1), 35-45. https://doi.org/10.1016/j.commatsci.2010.04.017.
  7. Duong, V.B., Sahamitmongkol, R. and Tangtermsirikul, S. (2013), "Effect of leaching on carbonation resistance and steel corrosion of cement-based materials", Constr. Build. Mater., 40, 1066-1075. https://doi.org/10.1016/j.conbuildmat.2012.11.042.
  8. Delagrave, A., Gerard, B. and Marchand, J. (1997), "Modelling the calcium leaching mechanisms in hydrated cement pastes", Mechanics of Chemical Degradation of Cement-Based Systems, Chapman & Hall, London, UK.
  9. Felix, E.F., Carrazedo, R. and Possan, E. (2021), "Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis", Constr. Build. Mater., 266, 121050. https://doi.org/10.1016/j.conbuildmat.2020.121050.
  10. Forster, A.M., Szadurski, E.M. and Banfill, P.F. (2014), "Deterioration of natural hydraulic lime mortars, I: Effects of chemically accelerated leaching on physical and mechanical properties of uncarbonated materials", Constr. Build. Mater., 72, 199-207. http://doi.org/10.1016/j.conbuildmat.2014.09.015.
  11. Gaitero, J.J., Saez de Ibarra, Y., Erkizia, E. and Campillo, I. (2006), "Silica nanoparticle addition to control the calcium-leaching in cement-based materials", Phys. Status Solidi A, 203(6), 1313-1318. https://doi.org/10.1002/pssa.200566168.
  12. Gerard, B., Le Bellego, C. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(10), 632-640. https://doi.org/10.1007/BF02480356.
  13. Haga, K., Shibata, M., Hironaga, M., Tanaka, S. and Nagasaki, S. (2005a), "Change in pore structure and composition of hardened cement paste during the process of dissolution", Cement Concrete Res., 35(5), 943-950. https://doi.org/10.1016/j.cemconres.2004.06.001.
  14. Haga, K., Sutou, S., Hironaga, M., Tanaka, S. and Nagasaki, S. (2005b), "Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste", Cement Concrete Res., 35(9), 1764-1775. https://doi.org/10.1016/j.cemconres.2004.06.034.
  15. Han, F., Liu, R. and Yan, P. (2014), "Effect of fresh water leaching on the microstructure of hardened composite binder pastes", Constr. Build. Mater., 68, 630-636. https://doi.org/10.1016/j.conbuildmat.2014.07.019.
  16. Heukamp, F.H., Ulm, F.J. and Germaine, J.T. (2001), "Mechanical properties of calcium-leached cement pastes: Triaxial stress states and the influence of the pore pressures", Cement Concrete Res., 31(5), 767-774. https://doi.org/10.1016/S0008-8846(01)00472-0.
  17. Inthata, S., Kowtanapanich, W. and Cheerarot, R. (2013), "Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks", Mater. Struct., 46(10), 1707-1721. https://doi.org/10.1617/s11527-012-0009-x.
  18. Jain, J. and Neithalath, N. (2009), "Analysis of calcium leaching behavior of plain and modified cement pastes in pure water", Cement Concrete Compos., 31(3), 176-185. https://doi.org/10.1016/j.cemconcomp.2009.01.003.
  19. Jiang, C., Jiang, L., Tang, X., Gong, J. and Chu, H. (2021), "Impact of calcium leaching on mechanical and physical behaviors of high belite cement pastes", Constr. Build. Mater., 286, 122983. https://doi.org/10.1016/j.conbuildmat.2021.122983.
  20. Jin, W., Jiang, L., Han, L., Gu, Y., Guo, M.Z., Gao, S. and Liu, M. (2022), "Influence of calcium leaching on mechanical and physical properties of limestone powder-cement pastes cured under different temperatures", J. Mater. Civil Eng., 34(9), https://doi.org/10.1061/(ASCE)MT.1943-5533.0004359.
  21. Kamali, S., Moranville, M. and Leclercq, S. (2008), "Material and environmental parameter effects on the leaching of cement pastes: Experiments and modelling", Cement Concrete Res., 38(4), 575-585. https://doi.org/10.1016/j.cemconres.2007.10.009.
  22. Kellouche, Y., Boukhatem, B., Ghrici, M., Rebouh, R. and Zidol, A. (2021), "Neural network model for predicting the carbonation depth of slag concrete", Asian J. Civil Eng., 22(7), 1401-1414. https://doi.org/10.1007/s42107-021-00390-z.
  23. Liu, K., Alam, M.S., Zhu, J., Zheng, J. and Chi, L. (2021a), "Prediction of carbonation depth for recycled aggregate concrete using ANN hybridized with swarm intelligence algorithms", Constr. Build. Mater., 301, 124382. https://doi.org/10.1016/j.conbuildmat.2021.124382.
  24. Liu, Q.F., Iqbal, M.F., Yang, J., Lu, X.Y., Zhang, P. and Rauf, M. (2021b), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 268, 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082.
  25. Lu, C., Yang, H., Liu, W., Mei, G., Wang, H. and Ge, X. (2014), "Effect of fly ash on compressive strength degradation due to calcium leaching procedure", Adv. Cement Res., 26(3), 137-144. https://doi.org/10.1680/adcr.13.00012.
  26. Mullauer, W., Beddoe, R.E. and Heinz, D. (2015), "Leaching behaviour of major and trace elements from concrete: Effect of fly ash and GGBS", Cement Concrete Compos., 58, 129-139. https://doi.org/10.1016/j.cemconcomp.2015.02.002.
  27. Na, B. and Yan, B. (2021), "Influence of temperature history on calcium leaching resistance of hydraulic concrete", IOP Conf. Ser.: Earth Environ. Sci., 804, 022057. https://doi.org/10.1088/1755-1315/804/2/022057.
  28. Nehdi, M., El Chabib, H. and El Naggar, M.H. (2001), "Predicting performance of self-compacting concrete mixtures using artificial neural networks", Mater. J., 98(5), 394-401. https://doi.org/10.14359/10729.
  29. Phung, Q.T., Maes, N., Jacques, D., De Schutter, G. and Ye, G. (2016a), "Investigation of the changes in microstructure and transport properties of leached cement pastes accounting for mix composition", Cement Concrete Res., 79, 217-234. https://doi.org/10.1016/j.cemconres.2015.09.017.
  30. Phung, Q.T., Maes, N., Jacques, D., Perko, J., De Schutter, G. and Ye, G. (2016b), "Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching", Constr. Build. Mater., 115, 179-192. https://doi.org/10.1016/j.conbuildmat.2016.04.049.
  31. Planel, D., Sercombe, J., Le Bescop, P., Adenot, F. and Torrenti, J. M. (2006), "Long-term performance of cement paste during combined calcium leaching-sulfate attack: Kinetics and size effect", Cement Concrete Res., 36(1), 137-143. https://doi.org/10.1016/j.cemconres.2004.07.039.
  32. Ponloa, W. and Sajjavanich, S. (2018), "Effects of calcium leaching from high volume fly ash cement paste and mortar", Mater. Today: Proc., 5(3), 9453-9460. https://doi.org/10.1016/j.matpr.2017.10.124.
  33. Poyet, S., Le Bescop, P., Pierre, M., Chomat, L. and Blanc, C. (2012), "Accelerated leaching of cementitious materials using ammonium nitrate (6M): Influence of test conditions", Eur. J. Environ. Civil Eng., 16(3-4), 336-351. https://doi.org/10.1080/19648189.2012.667712.
  34. Ragoug, R., Metalssi, O.O., Barberon, F., Torrenti, J.M., Roussel, N., Divet, L. and de Lacaillerie, J.B.D.E. (2019), "Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects", Cement Concrete Res., 116, 134-145. https://doi.org/10.1016/j.cemconres.2018.11.006.
  35. Roziere, E. and Loukili, A. (2011), "Performance-based assessment of concrete resistance to leaching", Cement Concrete Compos., 33(4), 451-456. https://doi.org/10.1016/j.cemconcomp.2011.02.002.
  36. Roziere, E., Loukili, A., El Hachem, R. and Grondin, F. (2009), "Durability of concrete exposed to leaching and external sulphate attacks", Cement Concrete Res., 39(12), 1188-1198. https://doi.org/10.1016/j.cemconres.2009.07.021.
  37. Song, Z., Jiang, L. and Chu, H. (2017), "Impact of calcium leaching on chloride diffusion behavior of cement pastes exposed to ammonium chloride aqueous solution", Constr. Build. Mater., 153, 211-215. https://doi.org/10.1016/j.conbuildmat.2017.07.094.
  38. Song, Z., Liu, Y., Jiang, L., Guo, M., Chen, J., Wang, W. and Xu, N. (2019), "Determination of calcium leaching behavior of cement pastes exposed to ammonium chloride aqueous solution via an electrochemical impedance spectroscopic approach", Constr. Build. Mater., 196, 267-276. https://doi.org/10.1016/j.conbuildmat.2018.11.128.
  39. Swanton, S.W., Heath, T.G. and Clacher, A. (2016), "Leaching behaviour of low Ca: Si ratio CaO-SiO2-H2O systems", Cement Concrete Res., 88, 82-95. https://doi.org/10.1016/j.cemconres.2016.06.001.
  40. Tang, Y.J., Zuo, X.B., Yin, G.J., Davoudi, H. and Li, X.N. (2018), "Influence of calcium leaching on chloride diffusivity in cement-based materials", Constr. Build. Mater., 174, 310-319. https://doi.org/10.1016/j.conbuildmat.2018.04.112.
  41. Tang, Y.J., Zuo, X.B., Yin, G.J., He, S.L. and Ayinde, O. (2017), "Influence of slag on leaching behavior of cement mortar lined in ductile iron pipe under a flowing solution", Mater. Des., 114, 612-622. https://doi.org/10.1016/j.matdes.2016.11.096.
  42. Tao, G., Liu, L., Qin, G. and Xu, X. (2019), "The effect of calcium leaching on the chloride diffusivity of hydrated tricalcium silicate pastes", IOP Conf. Ser.: Mater. Sci. Eng., 592, 012035. https://doi.org/10.1088/1757-899X/592/1/012035.
  43. Thike, P.H., Zhao, Z., Shi, P. and Jin, Y. (2020), "Significance of artificial neural network analytical models in materials' performance prediction", Bull. Mater. Sci., 43(1), 1-22. https://doi.org/10.1007/s12034-020-02154-y.
  44. Ulm, F.J., Torrenti, J.M. and Adenot, F. (1999), "Chemoporoplasticity of calcium leaching in concrete", J. Eng. Mech., 125(10), 1200-1211. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1200).
  45. Ulm, F.J., Heukamp, F.H. and Germaine, J.T. (2001), "Durability mechanics of calcium leaching of concrete and beyond", Frac. Mech. Concrete Struct., 4, 133-143.
  46. Vani, S. and Rao, T.M. (2019), "An experimental approach towards the performance assessment of various optimizers on convolutional neural network", 2019 3 rd International Conference on Trends in Electronics and Informatics, Tirunelveli, India, April.
  47. Wan, K., Li, Y. and Sun, W. (2012), "Application of tomography for solid calcium distributions in calcium leaching cement paste", Constr. Build. Mater., 36, 913-917. https://doi.org/10.1016/j.conbuildmat.2012.06.069.
  48. Wan, K., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066.
  49. Wan, K., Xu, Q., Li, L. and Sun, W. (2013), "3D porosity distribution of partly calcium leached cement paste", Constr. Build. Mater., 48, 11-15. https://doi.org/10.1016/j.conbuildmat.2013.06.073.
  50. Wan, K., Li, L. and Sun, W. (2013), "Solid-liquid equilibrium curve of calcium in 6 mol/L ammonium nitrate solution", Cement Concrete Res., 53, 44-50. https://doi.org/10.1016/j.cemconres.2013.06.003.
  51. Wang, Y., Yuan, Q. and Deng, D. (2019), "Degradation of mechanical properties of CA mortar caused by calcium leaching", Constr. Build. Mater., 208, 613-621. https://doi.org/10.1016/j.conbuildmat.2019.02.164.
  52. Xiong, C., Jiang, L., Xu, Y., Chu, H., Jin, M. and Zhang, Y. (2016), "Deterioration of pastes exposed to leaching, external sulfate attack and the dual actions", Constr. Build. Mater., 116, 52-62. https://doi.org/10.1016/j.conbuildmat.2016.04.133.
  53. Yang, H., Jiang, L.H. and Zhang, Y. (2011), "The effect of fly ash on calcium leaching properties of cement pastes in ammonium chloride solution", Adv. Mater. Res., 163, 1162-1170. https://doi.org/10.4028/www.scientific.net/AMR.163-167.1162.
  54. Yu, T. and Zhu, H. (2020), "Hyper-parameter optimization: A review of algorithms and applications", arXiv preprint arXiv, 2003, 05689. https://doi.org/10.48550/arXiv.2003.05689.
  55. Yu, Y. and Zhang, Y.X. (2017), "Coupling of chemical kinetics and thermodynamics for simulations of leaching of cement paste in ammonium nitrate solution", Cement Concrete Res., 95, 95-107. https://doi.org/10.1016/j.cemconres.2017.02.028.
  56. Zuo, X.B., Tang, Y.J., Yin, G.J., Jiang, K. and He, S.L. (2017), "Influence of fly ash and its partial replacement by slag on the leaching behavior of blended cement pastes", J. Mater. Civil Eng., 29(10), 04017187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002003.
  57. Zhang, M., He, Y., Ye, G., Lange, D.A. and Van Breugel, K. (2012), "Computational investigation on mass diffusivity in Portland cement paste based on X-ray computed microtomography (μCT) image", Constr. Build. Mater., 27(1), 472-481. https://doi.org/10.1016/j.conbuildmat.2011.07.017.