Acknowledgement
We are grateful to the referees for their useful suggestions.
References
- A. Aziz, A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 142(1) (1989), 226-235. https://doi.org/10.1016/0022-247X(89)90370-3
- S. Bernstein, Lecons Sur Les Proprietes extremales et la meilleure approximation desfunctions analytiques d'une fonctions reele, Gauthier-Villars, Paris, 1926.
- C. Frappier, Q.I. Rahman and S. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69-99. https://doi.org/10.1090/S0002-9947-1985-0773048-1
- P.D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513. https://doi.org/10.1090/S0002-9904-1944-08177-9
- M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(2) (1992), 337-343. https://doi.org/10.1090/S0002-9939-1992-1113648-1
- N.A. Rather, S.H. Ahangar and M.A. Shah, Some inequalities for the derivative of a polynomial, Int. J. Appl. Math., 26(2) (2013), 177-185. https://doi.org/10.12732/ijam.v26i2.4
- T. B. Singh, K. Krishnadas and B. Chanam, Lr inequalities of generalized Turan-type inequalities of polynomials, Nonlinear Funct. Anal. Appl., 26(4)(2021), 855-868.
- R. Soraisam, N. K. Singha and B. Chanam, Improved bounds of polynomial inequalities with restricted zero, Nonlinear Funct. Anal. Appl., 28(2)(2023), 421-437.