DOI QR코드

DOI QR Code

US Attenuation Imaging for the Evaluation and Diagnosis of Fatty Liver Disease

지방간 질환 진단을 위한 초음파 감쇠 영상 평가

  • Seung Jun Lee (Department of Radiology, Wonkwang University College of Medicine, Wonkwang University Hospital) ;
  • Youe Ree Kim (Department of Radiology, Wonkwang University College of Medicine, Wonkwang University Hospital) ;
  • Young Hwan Lee (Department of Radiology, Wonkwang University College of Medicine, Wonkwang University Hospital) ;
  • Kwon-Ha Yoon (Department of Radiology, Wonkwang University College of Medicine, Wonkwang University Hospital)
  • 이승준 (원광대학교 의과대학 원광대학교병원 영상의학과) ;
  • 김유리 (원광대학교 의과대학 원광대학교병원 영상의학과) ;
  • 이영환 (원광대학교 의과대학 원광대학교병원 영상의학과) ;
  • 윤권하 (원광대학교 의과대학 원광대학교병원 영상의학과)
  • Received : 2022.04.17
  • Accepted : 2022.10.14
  • Published : 2023.05.01

Abstract

Purpose This study aimed to determine whether the attenuation coefficient (AC) from attenuation imaging (ATI) was correlated with visual US assessment in patients with hepatic steatosis. Moreover, it aimed to assess whether the patient's blood chemistry results and CT attenuation were correlated with AC. Materials and Methods Patients who underwent abdominal US with ATI between April 2018 and December 2018 were included in this study. Patients with chronic liver disease or cirrhosis were excluded. The correlation between AC and other parameters, such as visual US assessment, blood chemistry results, liver attenuation, and liver-to-spleen (L/S) ratio, were analyzed. AC values according to visual US assessment grades were compared using analysis of variance. Results A total of 161 patients were included in this study. The correlation coefficient between US assessment and AC was 0.814 (p < 0.001). The mean AC values for the normal, mild, moderate, and severe grades were 0.56, 0.66, 0.74, and 0.85, respectively (p < 0.001). Alanine aminotransferase levels were significantly correlated with AC (r = 0.317, p < 0.001). The correlation coefficients between liver attenuation and AC and between L/S ratio and AC were -0.702 and -0.626, respectively (p < 0.001). Conclusion Visual US assessment and AC showed a strong positive correlation with the discriminative value between the groups. Computed tomography attenuation and AC showed a strong negative correlation.

목적 지방간 환자에서 초음파 감쇠영상(attenuation imaging; 이하 ATI)의 감쇠계수(attenuation coefficient; 이하 AC)와 시각적 평가 사이의 상관관계 여부를 파악하고 혈액화학 및 CT 감쇠계수와 AC 사이의 상관관계 여부를 평가하고자 하였다. 대상과 방법 본 후향적 연구에서는 2018년 4월부터 12월까지 ATI를 포함한 간초음파를 시행 받은 환자들 중 만성 간질환 및 간경화증을 제외한 환자들을 대상으로 하였다. AC와 초음파 시각적 평가, 혈액화학, 간 감쇠 및 간 대 비장 비율(liver to spleen ratio; 이하 L/S ratio) 사이의 상관관계를 분석하였다. 분산 분석을 통해 초음파 시각적 등급에 따른 AC 값을 비교하였다. 결과 총 161명의 환자가 포함되었다. 초음파 시각적 평가와 AC 사이의 상관 계수는 0.814였다(p < 0.001). 정상, 경도, 중등도, 고도 지방간의 AC 평균값은 각각 0.56, 0.66, 0.74, 0.85였다(p < 0.001). 알라닌 아미노전이효소는 AC와 유의한 상관관계가 있었다(r = 0.317, p < 0.001). 간 감쇠계수 및 L/S ratio와 AC 사이의 상관계수는 각각 -0.702 와 -0.626이었다(p < 0.001). 결론 초음파 시각적 평가와 AC는 강한 양의 상관관계 및 등급들 사이의 구별되는 AC 값을 보였고, CT 감쇠계수와 AC는 강한 음의 상관관계를 보였다.

Keywords

Acknowledgement

This paper was supported by Wonkwang University in 2022.

References

  1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006;43(2 Suppl 1):S99-S112  https://doi.org/10.1002/hep.20973
  2. Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 2012;6:149-171  https://doi.org/10.5009/gnl.2012.6.2.149
  3. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387-1395  https://doi.org/10.1002/hep.20466
  4. Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol 2013;178:38-45  https://doi.org/10.1093/aje/kws448
  5. Hui JM, Farrell GC. Clear messages from sonographic shadows? Links between metabolic disorders and liver disease, and what to do about them. J Gastroenterol Hepatol 2003;18:1115-1117  https://doi.org/10.1046/j.1440-1746.2003.03170.x
  6. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346:1221-1231  https://doi.org/10.1056/NEJMra011775
  7. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD; American Association for the Study of Liver Diseases. Liver biopsy. Hepatology 2009;49:1017-1044  https://doi.org/10.1002/hep.22742
  8. Hong YM, Yoon KT, Cho M, Chu CW, Rhu JH, Yang KH, et al. Clinical usefulness of controlled attenuation parameter to screen hepatic steatosis for potential donor of living donor liver transplant. Eur J Gastroenterol Hepatol 2017;29:805-810  https://doi.org/10.1097/MEG.0000000000000876
  9. Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003;38:1449-1457  https://doi.org/10.1016/j.hep.2003.09.022
  10. Kwon EY, Kim YR, Kang DM, Yoon KH, Lee YH. Usefulness of US attenuation imaging for the detection and severity grading of hepatic steatosis in routine abdominal ultrasonography. Clin Imaging 2021;76:53-59  https://doi.org/10.1016/j.clinimag.2021.01.034
  11. Jeon SK, Lee JM, Joo I, Yoon JH, Lee DH, Lee JY, et al. Prospective evaluation of hepatic steatosis using ultrasound attenuation imaging in patients with chronic liver disease with magnetic resonance imaging proton density fat fraction as the reference standard. Ultrasound Med Biol 2019;45:1407-1416  https://doi.org/10.1016/j.ultrasmedbio.2019.02.008
  12. Strauss S, Gavish E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol 2007;189:W320-W323  https://doi.org/10.2214/AJR.07.2123
  13. Sasso M, Beaugrand M, de Ledinghen V, Douvin C, Marcellin P, Poupon R, et al. Controlled attenuation parameter (CAP): a novel VCTETM guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010;36:1825-1835  https://doi.org/10.1016/j.ultrasmedbio.2010.07.005
  14. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009;51:433-445  https://doi.org/10.1016/j.jhep.2009.05.023
  15. Tamaki N, Koizumi Y, Hirooka M, Yada N, Takada H, Nakashima O, et al. Novel quantitative assessment system of liver steatosis using a newly developed attenuation measurement method. Hepatol Res 2018;48:821-828  https://doi.org/10.1111/hepr.13179
  16. Roldan-Valadez E, Favila R, Martinez-Lopez M, Uribe M, Mendez-Sanchez N. Imaging techniques for assessing hepatic fat content in nonalcoholic fatty liver disease. Ann Hepatol 2008;7:212-220  https://doi.org/10.1016/S1665-2681(19)31850-2
  17. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology 2002;122:1649-1657  https://doi.org/10.1053/gast.2002.33573
  18. Lee DH, Cho EJ, Bae JS, Lee JY, Yu SJ, Kim H, et al. Accuracy of two-dimensional shear wave elastography and attenuation imaging for evaluation of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2021;19:797-805.e7  https://doi.org/10.1016/j.cgh.2020.05.034
  19. Tada T, Iijima H, Kobayashi N, Yoshida M, Nishimura T, Kumada T, et al. Usefulness of attenuation imaging with an ultrasound scanner for the evaluation of hepatic steatosis. Ultrasound Med Biol 2019;45:2679-2687  https://doi.org/10.1016/j.ultrasmedbio.2019.05.033
  20. van Werven JR, Marsman HA, Nederveen AJ, Smits NJ, ten Kate FJ, van Gulik TM, et al. Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology 2010;256:159-168  https://doi.org/10.1148/radiol.10091790
  21. Bohte AE, van Werven JR, Bipat S, Stoker J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 2011;21:87-97  https://doi.org/10.1007/s00330-010-1905-5
  22. Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy necessary? Eur J Gastroenterol Hepatol 2003;15:539-543  https://doi.org/10.1097/00042737-200305000-00014
  23. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018;67:328-357  https://doi.org/10.1002/hep.29367
  24. Dong F, Zhang Y, Huang Y, Wang Y, Zhang G, Hu X, et al. Long-term lifestyle interventions in middle-aged and elderly men with nonalcoholic fatty liver disease: a randomized controlled trial. Sci Rep 2016;6:36783 
  25. Lapadat AM, Gheonea DI, Florescu LM, Gheonea IA. Before and after treatment quantitative assessment of hepatic steatosis in a Romanian population using magnetic resonance liver spectroscopy. Curr Health Sci J 2019;45:258-262 
  26. Yoo J, Lee JM, Joo I, Lee DH, Yoon JH, Kang HJ, et al. Reproducibility of ultrasound attenuation imaging for the noninvasive evaluation of hepatic steatosis. Ultrasonography 2020;39:121-129  https://doi.org/10.14366/usg.19034
  27. Bae JS, Lee DH, Suh KS, Kim H, Lee KB, Lee JY, et al. Noninvasive assessment of hepatic steatosis using a pathologic reference standard: comparison of CT, MRI, and US-based techniques. Ultrasonography 2022;41:344-354  https://doi.org/10.14366/usg.21150
  28. Gao J, Lee R, Trujillo M. Reliability of performing multiparametric ultrasound in adult livers. J Ultrasound Med 2022;41:699-711 https://doi.org/10.1002/jum.15751