DOI QR코드

DOI QR Code

Functional characterization and expression analysis of c-type and g-like-type lysozymes in yellowtail clownfish (Amphiprion clarkii)

  • Gaeun Kim (Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University) ;
  • Hanchang Sohn (Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University) ;
  • WKM Omeka (Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University) ;
  • Chaehyeon Lim (Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University) ;
  • Don Anushka Sandaruwan Elvitigala (Department of Basic Sciences and Social Science for Nursing, Faculty of Nursing, University of Colombo) ;
  • Jehee Lee (Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University)
  • Received : 2022.06.09
  • Accepted : 2023.01.10
  • Published : 2023.03.31

Abstract

Lysozymes are well-known antibacterial enzymes that mainly target the peptidoglycan layer of the bacterial cell wall. Animal lysozymes are mainly categorized as g-type, c-type, and i-type based on protein sequence and structural differences. In this study, c-type (AcLysC) and g-like-type (AcLysG-like) lysozymes from Amphiprion clarkii were characterized in silico via expressional and functional approaches. According to in silico analysis, open reading frames of AcLysC and AcLysG-like were 429 bp and 570 bp, respectively, encoding the corresponding polypeptide chains with 142 and 189 amino acids. Elevated expression levels of AcLysC and AcLysG-like were observed in the liver and the heart tissues, respectively, as evidenced by quantitative real-time polymerase chain reaction assays. AcLysC and AcLysG-like transcript levels were upregulated in gills, head kidney, and blood cells following experimental immune stimulation. Recombinant AcLysC exhibited potent lytic activity against Vibrio anguillarum, whereas recombinant AcLysG-like showed remarkable antibacterial activity against Vibrio harveyi and Streptococcus parauberis, which was further evidenced by scanning electron microscopic imaging of destructed bacterial cell walls. The findings of this study collectively suggest the potential roles of AcLysC and AcLysG-like in host immune defense.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST), funded by the Ministry of Oceans and Fisheries (20220570).

References

  1. Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol. 2006;43:119-24. https://doi.org/10.1111/j.1472-765X.2006.01989.x
  2. Avella MA, Olivotto I, Gioacchini G, Maradonna F, Carnevali O. The role of fatty acids enrichments in the larviculture of false percula clownfish Amphiprion ocellaris. Aquaculture. 2007;273:87-95. https://doi.org/10.1016/j.aquaculture.2007.09.032
  3. Bathige SDNK, Umasuthan N, Whang I, Lim BS, Jung HB, Lee J. Evidences for the involvement of an invertebrate goosetype lysozyme in disk abalone immunity: cloning, expression analysis and antimicrobial activity. Fish Shellfish Immunol. 2013;35:1369-79. https://doi.org/10.1016/j.fsi.2013.07.048
  4. Bera A, Biswas R, Herbert S, Gotz F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun. 2006;74:4598-604. https://doi.org/10.1128/IAI.00301-06
  5. Blazer VS. Bacterial fish pathogens. Environ Biol Fishes. 1988;21:77-9. https://doi.org/10.1007/BF02984445
  6. Cai S, Zhang Y, Wu F, Wu R, Yang S, Li Y, et al. Identification and functional characterization of a c-type lysozyme from Fenneropenaeus penicillatus. Fish Shellfish Immunol. 2019;88:161-9. https://doi.org/10.1016/j.fsi.2019.02.043
  7. Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35:127-60. https://doi.org/10.1007/s12038-010-0015-5
  8. Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol. 2012;20:501-10. https://doi.org/10.1016/j.tim.2012.06.005
  9. Camara VM, Prieur DJ. Secretion of colonic isozyme of lysozyme in association with cecotrophy of rabbits. Am J Physiol Gastrointest Liver Physiol. 1984;247:G19-23. https://doi.org/10.1152/ajpgi.1984.247.1.G19
  10. Caruso D, Schlumberger O, Dahm C, Proteau JP. Plasma lysozyme levels in sheatfish Silurus glanis (L.) subjected to stress and experimental infection with Edwardsiella tarda. Aquac Res. 2002;33:999-1008. https://doi.org/10.1046/j.1365-2109.2002.00716.x
  11. Chen T, Tan L, Hu N, Dong Z, Hu Z, Jiang Y, et al. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. J Insect Physiol. 2018;108:54-60. https://doi.org/10.1016/j.jinsphys.2018.05.005
  12. Clarke J, Hounslow AM, Bond CJ, Fersht AR, Daggett V. The effects of disulfide bonds on the denatured state of barnase. Protein Sci. 2000;9:2394-404. https://doi.org/10.1110/ps.9.12.2394
  13. Curras M, Magarinos B, Toranzo AE, Romalde JL. Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment. Dis Aquat Organ. 2002;52:129-36. https://doi.org/10.3354/dao052129
  14. Fu GH, Bai ZY, Xia JH, Liu F, Liu P, Yue GH. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass. PLOS ONE. 2013;8:e79743.
  15. Ganz T, Gabayan V, Liao HI, Liu L, Oren A, Graf T, et al. Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood. 2003;101:2388-92. https://doi.org/10.1182/blood-2002-07-2319
  16. Gao F, Qu L, Yu S, Ye X, Tian Y, Zhang L, et al. Identification and expression analysis of three c-type lysozymes in Oreochromis aureus. Fish Shellfish Immunol. 2012;32:779-88. https://doi.org/10.1016/j.fsi.2012.01.031
  17. Geven EJW, Klaren PHM. The teleost head kidney: integrating thyroid and immune signalling. Dev Comp Immunol. 2017;66:73-83. https://doi.org/10.1016/j.dci.2016.06.025
  18. Hancock REW, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA. 2000;97:8856-61. https://doi.org/10.1073/pnas.97.16.8856
  19. Harikrishnan R, Kim JS, Kim MC, Balasundaram C, Heo MS. Molecular characterization, phylogeny, and expression pattern of c-type lysozyme in kelp grouper, Epinephelus bruneus. Fish Shellfish Immunol. 2011;31:588-94. https://doi.org/10.1016/j.fsi.2011.06.019
  20. Hikima J, Minagawa S, Hirono I, Aoki T. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochim Biophys Acta Gene Struct Expr. 2001;1520:35-44. https://doi.org/10.1016/S0167-4781(01)00248-2
  21. Ito Y, Yoshikawa A, Hotani T, Fukuda S, Sugimura K, Imoto T. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem. 1999;259:456-61. https://doi.org/10.1046/j.1432-1327.1999.00064.x
  22. Jimenez-Cantizano RM, Infante C, Martin-Antonio B, Ponce M, Hachero I, Navas JI, et al. Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (Scophthalmus rhombus). Fish Shellfish Immunol. 2008;25:57-65. https://doi.org/10.1016/j.fsi.2007.12.009
  23. Jolles P, Jolles J. What's new in lysozyme research?: always a model system, today as yesterday. Mol Cell Biochem. 1984;63:165-89. https://doi.org/10.1007/BF00285225
  24. Kato S, Okamura M, Shimamoto N, Utiyama H. Spectral evidence for a rapidly formed structural intermediate in the refolding kinetics of hen egg-white lysozyme. Biochemistry. 1981;20:1080-5. https://doi.org/10.1021/bi00508a006
  25. Kawamura S, Ohkuma M, Chijiiwa Y, Kohno D, Nakagawa H, Hirakawa H, et al. Role of disulfide bonds in goose-type lysozyme. FEBS J. 2008;275:2818-30. https://doi.org/10.1111/j.1742-4658.2008.06422.x
  26. Kawamura S, Ohno K, Ohkuma M, Chijiiwa Y, Torikata T. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. J Biochem. 2006;140:75-85. https://doi.org/10.1093/jb/mvj125
  27. Ko J, Wan Q, Bathige SDNK, Lee J. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis). Fish Shellfish Immunol. 2016;58:622-30. https://doi.org/10.1016/j.fsi.2016.10.014
  28. Kokoshis PL, Williams DL, Cook JA, Di Luzio NR. Increased resistance to Staphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. Science. 1978;199:1340-2. https://doi.org/10.1126/science.628841
  29. Larsen AN, Solstad T, Svineng G, Seppola M, Jorgensen TO. Molecular characterisation of a goose-type lysozyme gene in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 2009;26:122-32. https://doi.org/10.1016/j.fsi.2008.03.021
  30. Lee-Huang S, Huang PL, Sun Y, Huang PL, Kung H, Blithe DL, et al. Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci USA. 1999;96:2678-81. https://doi.org/10.1073/pnas.96.6.2678
  31. Li C, Zhao Y, Liu T, Huang J, Zhang Q, Liu B, et al. The distribution and function characterization of the i type lysozyme from Apostichopus japonicus. Fish Shellfish Immunol. 2018;74:419-25. https://doi.org/10.1016/j.fsi.2017.10.036
  32. Li H, Wei X, Yang J, Zhang R, Zhang Q, Yang J. The bacteriolytic mechanism of an invertebrate-type lysozyme from mollusk Octopus ocellatus. Fish Shellfish Immunol. 2019;93:232-9. https://doi.org/10.1016/j.fsi.2019.07.060
  33. Li Y, Coutinho PM, Ford C. Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng Des Sel. 1998;11:661-7. https://doi.org/10.1093/protein/11.8.661
  34. Liu QN, Xin ZZ, Zhang DZ, Jiang SH, Chai XY, Li CF, et al. Molecular identification and expression analysis of a goose-type lysozyme (LysG) gene in yellow catfish Pelteobagrus fulvidraco. Fish Shellfish Immunol. 2016;58:423-8. https://doi.org/10.1016/j.fsi.2016.09.034
  35. Liu Y, Zha H, Yu S, Zhong J, Liu X, Yang H, et al. Molecular characterization and antibacterial activities of a goose-type lysozyme gene from roughskin sculpin (Trachidermus fasciatus). Fish Shellfish Immunol. 2022;127:1079-87. https://doi.org/10.1016/j.fsi.2022.07.053
  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  37. Luo JC, Zhang J, Sun L. A g-type lysozyme from deep-sea hydrothermal vent shrimp kills selectively gram-negative bacteria. Molecules. 2021;26:7624.
  38. Mai W, Wang W. Protection of blue shrimp (Litopenaeus stylirostris) against the white spot syndrome virus (WSSV) when injected with shrimp lysozyme. Fish Shellfish Immunol. 2010;28:727-33. https://doi.org/10.1016/j.fsi.2010.01.002
  39. Morera D, MacKenzie SA. Is there a direct role for erythrocytes in the immune response? Vet Res. 2011;42:89.
  40. Nilojan J, Bathige SDNK, Kugapreethan R, Thulasitha WS, Nam BH, Lee J. Molecular, transcriptional and functional insights into duplicated goose-type lysozymes from Sebastes schlegelii and their potential immunological role. Fish Shellfish Immunol. 2017;67:66-77. https://doi.org/10.1016/j.fsi.2017.05.037
  41. Paulsen SM, Lunde H, Engstad RE, Robertsen B. In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 2003;14:39-54. https://doi.org/10.1006/fsim.2002.0416
  42. Press CML, Evensen O. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 1999;9:309-18. https://doi.org/10.1006/fsim.1998.0181
  43. Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. Chicken-type lysozyme in channel catfish: expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2013;35:680-8. https://doi.org/10.1016/j.fsi.2013.05.018
  44. Prilusky J, Hodis E, Canner D, Decatur WA, Oberholser K, Martz E, et al. Proteopedia: a status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol. 2011;175:244-52. https://doi.org/10.1016/j.jsb.2011.04.011
  45. Ragland SA, Criss AK. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLOS Pathog. 2017;13:e1006512.
  46. Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem. 2005;280:326-33. https://doi.org/10.1074/jbc.M411006200
  47. Rivas AJ, Lemos ML, Osorio CR. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol. 2013;4:283.
  48. Roux N, Salis P, Lee SH, Besseau L, Laudet V. Anemonefish, a model for Eco-Evo-Devo. Evodevo. 2020;11:20.
  49. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177-97. https://doi.org/10.1002/cphy.c130024
  50. Saurabh S, Sahoo PK. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res. 2008;39:223-39. https://doi.org/10.1111/j.1365-2109.2007.01883.x
  51. Sava G, Ceschia V, Zabucchi G. Evidence for host-mediated antitumor effects of lysozyme in mice bearing the MCa mammary carcinoma. Eur J Cancer Clin Oncol. 1988;24:1737-43. https://doi.org/10.1016/0277-5379(88)90075-2
  52. Silvetti T, Morandi S, Hintersteiner M, Brasca M. Use of hen egg white lysozyme in the food industry. In: Hester PY, editor. Egg innovations and strategies for improvements. London: Elsevier; 2017. p. 233-42.
  53. Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L. Microbial diversity and potential pathogens in ornamental fish aquarium water. PLOS ONE. 2012;7:e39971.
  54. Subbotkina TA, Subbotkin MF. Lysozyme content in organs and blood serum in various species in the volga river. J Evol Biochem Physiol. 2003;39:537-46. https://doi.org/10.1023/B:JOEY.0000015961.99374.62
  55. Sun BJ, Wang GL, Xie HX, Gao Q, Nie P. Gene structure of goosetype lysozyme in the mandarin fish Siniperca chuatsi with analysis on the lytic activity of its recombinant in Escherichia coli. Aquaculture. 2006;252:106-13. https://doi.org/10.1016/j.aquaculture.2005.07.046
  56. Takahashi M, Okakura Y, Takahashi H, Imamura M, Takeuchi A, Shidara H, et al. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int J Food Microbiol. 2018;266:104-8. https://doi.org/10.1016/j.ijfoodmicro.2017.11.017
  57. Umasuthan N, Bathige SDNK, Kasthuri SR, Wan Q, Whang I, Lee J. Two duplicated chicken-type lysozyme genes in disc abalone Haliotis discus discus: molecular aspects in relevance to structure, genomic organization, mRNA expression and bacteriolytic function. Fish Shellfish Immunol. 2013;35:284-99. https://doi.org/10.1016/j.fsi.2013.04.038
  58. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe. 2009;6:10-21. https://doi.org/10.1016/j.chom.2009.06.007
  59. Wang M, Zhao X, Kong X, Wang L, Jiao D, Zhang H. Molecular characterization and expressing analysis of the c-type and g-type lysozymes in Qihe crucian carp Carassius auratus. Fish Shellfish Immunol. 2016;52:210-20. https://doi.org/10.1016/j.fsi.2016.03.040
  60. Wang Q, Wang C, Mu C, Wu H, Zhang L, Zhao J. A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate c-type lysozymes. PLOS ONE. 2013;8:e67469.
  61. Wei Q, Mu C, Wang C, Zhao J. Molecular characterization, expression, and antibacterial activity of a c-type lysozyme isolated from the manila clam, Ruditapes philippinarum. Fish Shellfish Immunol. 2018;81:502-8. https://doi.org/10.1016/j.fsi.2018.07.036
  62. Wei S, Huang Y, Cai J, Huang X, Fu J, Qin Q. Molecular cloning and characterization of c-type lysozyme gene in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol. 2012;33:186-96. https://doi.org/10.1016/j.fsi.2012.03.027
  63. Wei S, Huang Y, Huang X, Cai J, Wei J, Li P, et al. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Dev Comp Immunol. 2014;46:401-12. https://doi.org/10.1016/j.dci.2014.05.006
  64. Whang I, Lee Y, Lee S, Oh MJ, Jung SJ, Choi CY, et al. Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein. Fish Shellfish Immunol. 2011;30:532-42. https://doi.org/10.1016/j.fsi.2010.11.025
  65. Xie JW, Cheng CH, Ma HL, Feng J, Su YL, Deng YQ, et al. Molecular characterization, expression and antimicrobial activities of a c-type lysozyme from the mud crab, Scylla paramamosain. Dev Comp Immunol. 2019;98:54-64. https://doi.org/10.1016/j.dci.2019.04.002
  66. Xue QG, Schey KL, Volety AK, Chu FLE, La Peyre JF. Purification and characterization of lysozyme from plasma of the eastern oyster (Crassostrea virginica). Comp Biochem Physiol B Biochem Mol Biol. 2004;139:11-25. https://doi.org/10.1016/j.cbpc.2004.05.011
  67. Yanagisawa Y, Ochi H. Step-fathering in the anemonefish Amphiprion clarkii: a removal study. Anim Behav. 1986;34:1769-80. https://doi.org/10.1016/S0003-3472(86)80263-9
  68. Ye X, Zhang L, Tian Y, Tan A, Bai J, Li S. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev Comp Immunol. 2010;34:501-9. https://doi.org/10.1016/j.dci.2009.12.009
  69. Yildiz HY. Plasma lysozyme levels and secondary stress response in rainbow trout, Oncorhynchus mykiss (Walbaum) after exposure to Leteux-Meyer mixture. Turk J Vet Anim Sci. 2006;30:265-9.
  70. Yin X, Hu D, Li JF, He Y, Zhu TD, Wu MC. Contribution of disulfide bridges to the thermostability of a type a feruloyl esterase from Aspergillus usamii. PLOS ONE. 2015;10:e0126864.
  71. Zhang S, Xu Q, Boscari E, Du H, Qi Z, Li Y, et al. Characterization and expression analysis of g-and c-type lysozymes in Dabry's sturgeon (Acipenser dabryanus). Fish Shellfish Immunol. 2018;76:260-5. https://doi.org/10.1016/j.fsi.2018.03.006
  72. Zhang X, Wu F, Sun M, Wang Q, Wang Y, Yang X. Study on antimicrobial and antiviral activities of lysozyme from marine strain S-12-86 in vitro. Agric Sci China. 2008;7:112-6. https://doi.org/10.1016/S1671-2927(08)60029-2
  73. Zhang XH, He X, Austin B. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life Sci Technol. 2020;2:231-45. https://doi.org/10.1007/s42995-020-00037-z
  74. Zhao J, Song L, Li C, Zou H, Ni D, Wang W, et al. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Mol Immunol. 2007;44:1198-208. https://doi.org/10.1016/j.molimm.2006.06.008
  75. Zhao L, Sun J, Sun L. The g-type lysozyme of Scophthalmus maximus has a broad substrate spectrum and is involved in the immune response against bacterial infection. Fish Shellfish Immunol. 2011;30:630-7. https://doi.org/10.1016/j.fsi.2010.12.012