DOI QR코드

DOI QR Code

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee (Biogas Research Center, Hankyong National University) ;
  • Chang-Hyun Kim (Department of Animal Resource Science, Hankyong National university) ;
  • Young-Man Yoon (Biogas Research Center, Hankyong National University)
  • Received : 2022.11.18
  • Accepted : 2023.01.30
  • Published : 2023.05.01

Abstract

Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

Keywords

Acknowledgement

This study was supported by the MAFRA and IPET's support for industrialization technology development to respond to current livestock issues (Project NO. 321091-03).

References

  1. Park M, Kim N, Lee S, Yeon S, Seo JH, Park D. A study of solubilization of sewage sludge by hydrothermal treatment. J Environ Manag 2019;250:109490. https://doi.org/10.1016/j.jenvman.2019.109490
  2. Carlsson M, Lagerkvist A, Morgan-Sagastume F. The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 2012;32:1634-50. https://doi.org/10.1016/j.wasman.2012.04.016
  3. Bougrier C, Delgenes JP, Carrere H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 2008;139:236-44. https://doi.org/10.1016/j.cej.2007.07.099
  4. Cao Z, Jung D, Olszewski MP, Arauzo PJ, Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Manag 2019;100:13850. https://doi.org/10.1016/j.wasman.2019.09.009
  5. Wirth B, Eberhardt G, Lotze-Campen H, et al. Hydrothermal carbonization: influence of plant capacity, feedstock choice and location on product cost. Proceedings of 19th European Biomass Conference & Exhibition; 2011 Jun 6-10; Berlin, Germany.
  6. Ferrer I, Ponsa S, Vazquez F, Font X. Increasing biogas production by thermal (70℃) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 2008;42:186-92. https://doi.org/10.1016/j.bej.2008.06.020
  7. Oh SY, Kim CH, Yoon YM. The bioenergy conversion characteristics of feedlot manure discharging from beef cattle barn. Korean J Soil Sci Fert 2015;48:697-704. https://doi.org/10.7745/KJSSF.2015.48.6.697
  8. Ramke HG, Blohse D, Lehmann HJ, Fettig J. Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegman R, editors. Twelfth International Waste Management and Landfill Symphosium; Sardina, Italy: CISA pub; 2009.
  9. Ahring BK, Ibrahim AA, Mladenovska Z. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 2001;35:2446-52. https://doi.org/10.1016/S0043-1354(00)00526-1
  10. Marin-Batista J, Villamil J, Qaramaleki S, Coronella C, Mohedano A, de La Rubia M. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew Energy 2020;160:623-32. https://doi.org/10.1016/j.renene.2020.07.003
  11. Omar R, Harun RM, Mohd Ghazi T, et al. Anaerobic treatment of cattle manure for biogas production. In: Proceedings Philadelphia, Annual Meeting of American Institute of Chemical Engineers; 2008.
  12. Boyle W. Energy recovery from sanitary landfills-a review. In: Schlegel HG, Barnea J, editors. Microbial energy conversion; Frankfurt, Germany: Pergamon Press; 1977. pp. 119-38. https://doi.org/10.1016/B978-0-08-021791-8.50019-6
  13. Angelidaki I, Alves M, Bolzonella D, et al. Defining the bio-methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 2009;59:927-34. https://doi.org/10.2166/wst.2009.040
  14. Lay JJ, Li YY, Noike T. Mathematical model for methane production from landfill bioreactor. J Environ Eng 1998;124:730-6. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(730)
  15. Luna-deRisco M, Normak A, Orupold K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 2011;9(1-2):331-42.
  16. Rice E, Baird R, Eaton A, Clesceri L. APHA (American Public Health Association): Standard method for the examination of water and wastewater. Washington DC, USA: American Water Works Association and Water Environment Federation; 2012.
  17. Sorensen AH, Winther-Nielsen M, Ahring BK. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl Microbiol Biotechnol 1991;34:823-7. https;//doi.org/10.1007/bf00169358
  18. ArdIc I, Taner F. Effects of thermal, chemical and thermochemical pretreatments to increase biogas production yield of chicken manure. Fresenius Environ Bull 2005;14:373-80.
  19. Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK. Thermal pretreatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. Water Sci Technol 2006;53:59-67. https://doi.org/10.2166/wst.2006.236
  20. Yoneyama N, Morimoto H, Ye CX, Ashihara H, Mizuno K, Kato M. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Genet Genomics. 2006;275:125-35. https://doi.org/10.1007/s00438-005-0070-z
  21. Kim H, Jeon YW. Effects of hydro-thermal reaction temperature on anaerobic biodegradability of piggery manure hydrolysate. Korean J Soil Sci Fert 2015;48:602-9. https://doi.org/10.7745/KJSSF.2015.48.6.602
  22. Wang L, Chang Y, Li A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review. Renew Sustain Energy Rev 2019;108:423-40. https://doi.org/10.1016/j.rser.2019.04.011
  23. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Biorefin 2010;4:16077. https://doi.org/10.1002/bbb.198
  24. Libra JA, Ro KS, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011;2:71-106. https://doi.org/10.4155/bfs.10.81
  25. Kim SH, Kim H, Kim CH, et al. Effect of the pretreatment by thermal hydrolysis on biochemical methane potential of piggery sludge. Korean J Soil Sci Fert 2012;45:524-31. https://doi.org/10.7745/KJSSF.2012.45.4.524
  26. Gossett RW, Brown DA, Young DR. Predicting the bioaccumulation and toxicity of organic compounds. Coastal Water Research Project Biennial Report 1981;1982:149-56.
  27. Gao Y, Liu Y, Zhu G, et al. Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products. Energy 2018;165:662-72. https://doi.org/10.1016/j.energy.2018.09.185
  28. Jain S, Sharma M. Power generation from MSW of Haridwar city: a feasibility study. Renew Sustain Energy Rev 2011;15:69-90. https://doi.org/10.1016/j.rser.2010.09.007
  29. Oh SY, Yoon YM. Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies 2017;10:1876. https://doi.org/10.3390/en10111876
  30. Martins SI, Jongen WM, Van Boekel MA. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 2000;11(9-10):364-73. https://doi.org/10.1016/S0924-2244(01)00022-X