DOI QR코드

DOI QR Code

A Case Report on the Immediate Effects of Cytoskeletal Manual Therapy on Pain, Muscle Thickness, and Pressure Pain Threshold in a Patient with Scoliosis

  • Received : 2023.02.11
  • Accepted : 2023.03.14
  • Published : 2023.03.31

Abstract

Objective: Patients with scoliosis complain of various symptoms such as muscle imbalance, dysfunction, back pain, abnormal posture and gait abnormality. The most basic treatment for scoliosis is to observe the progress based on conservative treatment. Therefore, in this case report, the effect of cytoskeletal manual therapy (CMT), a soft tissue mobilization technique, on pain intensity, muscle thickness, and pressure pain threshold (PPT) in a patient with scoliosis was investigated. Design: A case report Methods: A 25-year-old male diagnosed with scoliosis visited the Neuromusculoskeletal Science Laboratory with chronic back pain. In the laboratory, scoliosis was confirmed through the X-ray image used for his diagnosis, and it was confirmed again through Adam's forward bending test. Pain, pressure pain threshold and muscle thickness were measured to compare the immediate effects of CMT applied in the laboratory for 40 minutes. Treatments were visited two weeks after the first visit and outcome measures were assessed after a total of two visits. Results: After receiving CMT up to the second session, the pain intensity decreased by 4 points and the screening angle decreased by 15 degrees. Muscle thickness decreased in all but 10 mm on the dominant side of the thoracic spine. All of the PPTs increased, and the greatest increase was 3.1 lb on the dominant side of the thoracic spine. Conclusions: CMT showed positive improvement in pain during trunk flexion, spinal curvature, muscle imbalance, and pressure pain, which is considered as an ancillary treatment option for scoliosis management.

Keywords

References

  1. Janicki JA, Alman B. Scoliosis: Review of diagnosis and treatment. Paediatr Child Health. 2007;12:771-6. https://doi.org/10.1093/pch/12.9.771
  2. Rowe DE, Feise RJ, Crowther ER, Grod JP, Menke JM, Goldsmith CH, et al. Chiropractic manipulation in adolescent idiopathic scoliosis: a pilot study. Chiropr Osteopat. 2006;14:15. https://doi.org/10.1186/1746-1340-14-15
  3. Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13:3.
  4. Lotan S, Kalichman L. Manual therapy treatment for adolescent idiopathic scoliosis. J Bodyw Mov Ther. 2019;23:189-93. https://doi.org/10.1016/j.jbmt.2018.01.005
  5. Bondar K, Nguyen A, Vatani J, Kessler J. The Demographics and Epidemiology of Infantile, Juvenile, and Adolescent Idiopathic Scoliosis in a Southern California Integrated Health Care System. Spine. 2021;46:1468-77. https://doi.org/10.1097/BRS.0000000000004046
  6. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527-37. https://doi.org/10.1016/S0140-6736(08)60658-3
  7. Yagci G, Ayhan C, Yakut Y. Effectiveness of basic body awareness therapy in adolescents with idiopathic scoliosis: A randomized controlled study1. J Back Musculoskelet Rehabil. 2018;31:693-701. https://doi.org/10.3233/BMR-170868
  8. Yang J, Jang D, Suh S. Diagnosis and conservative treatment of adolescent idiopathic scoliosis. J Korean Med Assoc. 2021;64.
  9. Kim HS. Evidence-based of nonoperative treatment in adolescent idiopathic scoliosis. Asian Spine J. 2014;8:695-702. https://doi.org/10.4184/asj.2014.8.5.695
  10. Childs JD, Piva SR, Fritz JM. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 2005;30:1331-4. https://doi.org/10.1097/01.brs.0000164099.92112.29
  11. Amendt LE, Ause-Ellias KL, Eybers JL, Wadsworth CT, Nielsen DH, Weinstein SL. Validity and reliability testing of the Scoliometer®. Phys Ther. 1990;70:108-17. https://doi.org/10.1093/ptj/70.2.108
  12. de Almeida FN, Lopes CR, da Conceicao RM, Oenning L, Crisp AH, de Sousa NMF, et al. Acute Effects of the New Method Sarcoplasma Stimulating Training Versus Traditional Resistance Training on Total Training Volume, Lactate and Muscle Thickness. Front Physiol. 2019;10:579.
  13. Shin SJ, Yoo WG. Changes in cervical range of motion, flexion-relaxation ratio and pain with visual display terminal work. Work. 2014;47:261-5. https://doi.org/10.3233/WOR-121580
  14. Delaney GA, McKee AC. Inter- and intra-rater reliability of the pressure threshold meter in measurement of myofascial trigger point sensitivity. Am J Phys Med Rehabil. 1993;72:136-9. https://doi.org/10.1097/00002060-199306000-00005
  15. Kim H-J, Song S-H, Lee S. Effect of Cytoskeletal Manual Therapy, a Novel Soft Tissue Mobilization Technique, on Axillary Web Syndrome after Axillary Lymph Node Dissection: A Case Report. Phys Ther Rehabil Sci. 2022;11:464-70. https://doi.org/10.14474/ptrs.2022.11.4.464
  16. Anitescu M. Ischemic pain2018. 141-51 p.
  17. Langevin HM, Storch KN, Snapp RR, Bouffard NA, Badger GJ, Howe AK, et al. Tissue stretch induces nuclear remodeling in connective tissue fibroblasts. Histochem Cell Biol. 2010;133:405-15. https://doi.org/10.1007/s00418-010-0680-3
  18. Nekouzadeh A, Pryse KM, Elson EL, Genin GM. Stretch-activated force shedding, force recovery, and cytoskeletal remodeling in contractile fibroblasts. J Biomech. 2008;41:2964-71. https://doi.org/10.1016/j.jbiomech.2008.07.033
  19. LeBauer A, Brtalik R, Stowe K. The effect of myofascial release (MFR) on an adult with idiopathic scoliosis. J Bodyw Mov Ther. 2008;12:356-63. https://doi.org/10.1016/j.jbmt.2008.03.008
  20. Cote P, Kreitz BG, Cassidy JD, Dzus AK, Martel J. A study of the diagnostic accuracy and reliability of the Scoliometer and Adam's forward bend test. Spine. 1998;23:796-802. https://doi.org/10.1097/00007632-199804010-00011
  21. Plais N, Bao H, Lafage R, Gupta M, Smith JS, Shaffrey C, et al. The clinical impact of global coronal malalignment is underestimated in adult patients with thoracolumbar scoliosis. Spine Deform. 2020;8:105-13. https://doi.org/10.1007/s43390-020-00046-z
  22. Kim M-J, Park D-S. The effect of Schroth's three-dimensional exercises in combination with respiratory muscle exercise on Cobb's angle and pulmonary function in patients with idiopathic scoliosis. Phys Ther Rehabil Sci. 2017;6:113-9. https://doi.org/10.14474/ptrs.2017.6.3.113
  23. Radwan A, Bigney KA, Buonomo HN, Jarmak MW, Moats SM, Ross JK, et al. Evaluation of intra-subject difference in hamstring flexibility in patients with low back pain: An exploratory study. J Back Musculoskelet Rehabil. 2014.
  24. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013;153:376-88. https://doi.org/10.1016/j.cell.2013.02.053
  25. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12:153-63. https://doi.org/10.1038/ncb2015
  26. Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ, et al. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med. 2013;5:626-39. https://doi.org/10.1002/emmm.201202096
  27. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 2015;21:786-94. https://doi.org/10.1038/nm.3869
  28. Davidson JM, Broadley KN, Quaglino D, Jr. Reversal of the wound healing deficit in diabetic rats by combined basic fibroblast growth factor and transforming growth factor-beta1 therapy. Wound Repair Regen. 1997;5:77-88. https://doi.org/10.1046/j.1524-475X.1997.50115.x
  29. Curtis AS, Seehar GM. The control of cell division by tension or diffusion. Nature. 1978;274:52-3. https://doi.org/10.1038/274052a0