DOI QR코드

DOI QR Code

Analyzing the Impact of Species on Urban Development Using Meta Population Model

메타개체군 이론을 활용한 도시개발에 따른 생물 종 영향 평가 활용 가능성 분석

  • Eun Sub Kim (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Young Won Mo (Department of Landscape Architecture, Yeungnam University) ;
  • Tae Yoon Park (Graduate School of Education, Yonsei University) ;
  • Yoonho Jeon (Integrated Major in Smart City Global Convergence Program, Seoul National University) ;
  • Jiyoung Choi (Research Institute of Agriculture and Sciences, Seoul National University) ;
  • Dong Kun Lee (Interdisciplinary Program in Landscape Architecture, Seoul National University)
  • 김은섭 (서울대학교 협동과정 조경학) ;
  • 모용원 (영남대학교 생명응용과학대학 조경학과) ;
  • 박태윤 (연세대학교 교육대학원) ;
  • 전윤호 (서울대학교 융합전공 스마트시티 글로벌 융합) ;
  • 최지영 (서울대학교 농업생명과학연구원) ;
  • 이동근 (서울대학교 협동과정 조경학)
  • Received : 2022.12.09
  • Accepted : 2023.04.06
  • Published : 2023.04.30

Abstract

As differences in the impact of each species on a spatial scale occur, analysis at the landscape scale is necessary to evaluate the impact of a development project. In previous studies, the Incidence Function Model (IFM) based on meta population theory was used to analyze the impact of species on the environment that changes according to urban development. However, since the model was required at least 10 occupied areas, it is difficult to use it for species that are difficult to monitor such as endangered species. Therefore, we proposed the Incidence Function Model (IFM) using species distribution model to fill the species data. In addition, we reviewed whether the developed model can be used in environmental impact assessment. As a result of the analysis, the minimum occupancy of Prionailurus bengalensis on urban development decreased to 56.5% and the possibility of survival to 28.7%. We confirmed that It rapidly decreased from the reference points of 230 and 70habitats through analysis of the meta-population capacity according to the decrease in the number of habitats. These results can be assessing the environment impact of each species on habitat loss. And it can support decision-making on the minimum number and area of habitat for species protection. This study is expected to be used as basic data for environment impact assessment on before and after development projects and mitigation measures plans, thereby increasing the effectiveness of reduction plans.

공간 스케일에 따른 생물 종 별 영향의 차이가 발생함에 따라, 도시 개발 사업에 따른 영향을 정량적으로 평가하기 위해서는 경관규모에서의 분석이 필요하다. 선행연구에서는 도시개발에 따라 변화하는 환경에 대한 생물종 영향을 분석하기위해 메타개체군 이론을 기반한 Incidence Function Model (IFM)을 활용하여 분석하고 있다. 하지만 해당 모델은 최소 점유영역이 10개 이상이 되어야 하므로, 모니터링이 어려운 생물종에 대한 활용은 어렵다. 따라서 본 연구에서는 이러한 문제점을 보완하기 위해 삵(Prionailurus bengalensis)을 중심으로 종 분포 모델을 통해 구축된 데이터를 바탕으로 IFM 모델을 분석하고자 하였다. 또한, 본 모델을 통해 환경영향평가서 중 자연생태환경분야에서의 활용 가능성을 검토하였다. 연구결과, 도시개발에 따른 삵의 최소 점유율은 56.5%, 생존가능성은 28.7%로 감소하는 것을 확인할 수 있었다. 서식지 개수 감소에 따른 개체군 수용력에 대한 분석을 통해 230개소와 70개소에서 개체군의 수용 능력이 급격하게 감소함을 확인하였다. 본 연구는 환경계획 관점에서 서식지 면적 감소에 따른 삵의 환경영향을 평가하였으며, 삵을 보호하기 위한 최소한의 서식지 개수 및 면적 설정에 대한 의사결정을 지원할 수 있다. 이는 개발 프로젝트 전, 후 영향평가 및 저감방안 계획에 기초자료로 활용됨으로써, 저감방안의 실효성을 높여줄 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 ICT기반 환경영향평가 의사결정 지원 기술개발사업의 지원을 받아 연구되었습니다(MOE) (2021003360002).

References

  1. Biedermann R. 2000. Metapopulation Dynamics of the Froghopper Neophilaenus Albipennis (F. 1798) (Homoptera, Cercopidae) - What Is the Minimum Viable Metapopulation Size? Vol. 4. 
  2. Donohue I, Owen LP, Jose MM, Andrew LJ, Luke M, Mafalda V, Kevin H, Miguel L, Nessa EO, Mark CE. 2013. On the Dimensionality of Ecological Stability. Ecology Letters 16(4): 421-429.  https://doi.org/10.1111/ele.12086
  3. Drayson K, Graham W, Stewart T. 2015. Assessing the Quality of the Ecological Component of English Environmental Statements. Journal of Environmental Management. 160: 241-253. doi: 10.1016/j.jenvman.2015.06.022. 
  4. Geneletti D. 2006. Some Common Shortcomings in the Treatment of Impacts of Linear Infrastructures on Natural Habitat. Environmental Impact Assessment Review. 26(3): 257-267. doi: 10.1016/j.eiar.2005.10.003. 
  5. Graham LJ, Roy HH, Richard F. 2015. Using Citizen Science Data for Conservation Planning: Methods for Quality Control and Downscaling for Use in Stochastic Patch Occupancy Modelling. Biological Conservation 192: 65-73. doi: 10.1016/j.biocon.2015.09.002. 
  6. Graham LJ, Roy HH, Richard F. 2018. The Incidence Function Model as a Tool for Landscape-Scale Ecological Impact Assessments. Landscape and Urban Planning 170: 187-194. doi: 10.1016/j.landurbplan.2017.10.008.
  7. Hanski I. 1994. A Practical Model of Metapopulation Dynamics. Vol. 63. 
  8. Hobbs R. 1997. Future Landscapes and the Future of Landscape Ecology. Vol. 37. 
  9. Jeon SW, Kim JE, Jung HC, Lee WK, Kim JS. 2014. Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation - Focused on National Ecosystem Survey Data -. Journal of the Korea Society of Environmental Restoration Technology 17(1): 111-122. doi: 10.13087/kosert.2014.17.1.111. [Korean Literature] 
  10. Johansson V, Thomas R, Tord S. 2013. Epiphyte Metapopulation Persistence after Drastic Habitat Decline and Low Tree Regeneration: Time-Lags and Effects of Conservation Actions. Journal of Applied Ecology 50(2): 414-422. doi: 10.1111/1365-2664.12049. 
  11. Karlson M, Ulla M, Berit B. 2014. Road Ecology in Environmental Impact Assessment. Environmental Impact Assessment Review 48: 10-19. doi: 10.1016/j.eiar.2014.04.002. 
  12. Kim JY, Seo CW, Kwon HS, Ryu JE, Kim MJ. 2012. A Study on the Species Distribution Modeling Using National Ecosystem Survey Data. J Environ Impact Assess. 21(4): 593-607 [Korean Literature] 
  13. Kwon HS. 2014. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models. Journal of Korean Society for Geospatial Information System 22(4): 47-52. doi: 10.7319/kogsis.2014.22.4.047. [Korean Literature] 
  14. Lee JC, Han BH, Choi JW, Noh TH. 2012. A study on the plan of Namsan (Mt.) Park for Restoration Eco-cultural Corridors of the Old Town in Wonju. Pro. Kor. Soc. Env. Eco. Con. 22(2): 113-117. [Korean Literature] 
  15. MacKenzie, DI, Nichols JD, Lachman GB, Droege S, Royle AA, Langtimm CA. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8): 2248-2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 
  16. McHugh N, Stewart T. 2011. A Rapid Ecological Network Assessment Tool and Its Use in Locating Habitat Extension Areas in a Changing Landscape. Journal for Nature Conservation 19(4): 236-244. doi: 10.1016/j.jnc.2011.02.002. 
  17. Mortberg UM, Balfors B, Knol WC. 2007. Landscape Ecological Assessment: A Tool for Integrating Biodiversity Issues in Strategic Environmental Assessment and Planning. Journal of Environmental Management. 82(4): 457-470. doi: 10.1016/j.jenvman.2006.01.005. 
  18. Noh TH, Pi JH, Choi JW, Lee KJ. 2013. Properties of Wildbirds Habitat According to Biotope Types at Seom River and Wonju Stream. Korean J. Environ. Ecol. 27(6): 676-689. doi:10.13047/KJEE.2013.27.6.676. [Korean Literature] 
  19. Opdam P, Jana V, Rogier P. 2003. Landscape Cohesion: An Index for the Conservation Potential of Landscapes for Biodiversity. 
  20. Park JJ, Woo DG, Oh DH, Park CH. 2012. Site Selection of Wildlife Passage for Leopard Cat in Urban Area using Space Syntax. Journal of the Korean Institute of Landscape Architecture 40(1): 92-99. [Korean Literature]  https://doi.org/10.9715/KILA.2012.40.1.092
  21. Yoo DY, Lim TY, Kim WM, Song WK. 2021. A Comparative Study on HSI and MaxEnt Habitat Prediction Models: About prionailurus bengalensis. J. Korean Env. Res. Tech. 24(5): 1-14. doi: 10.13087/kosert.2021.24.5.1. [Korean Literature] 
  22. Treweek J. 1996. Ecology and Environmental Impact Assessment. Vol. 33. 
  23. Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. 2003. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. In Ecological Applications. Ecological Society of America 13(6): 1790-1801. https://doi.org/10.1890/02-5078