References
- E. As and A. Sarioglugil, On the Bishop curvatures of involute-evolute curve couple in E3, Inter. J. Phys. Sci. 9 (2014), no. 7, 140-145. https://doi.org/10.5897/IJPS2013.4079
- M. Bilici and Caliskan, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Int. Math. Forum. 4 (2009), no. 31, 1497-1509.
- Z. Bozkurt, I. Gok, Y. Yayli, and F. N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys. 55 (2014), no. 5, 053501.
- J. H. Choi and Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput. 218 (2012), no. 18, 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
- S. L. Druta-Romaniuc, J. I. Inoguchi, M. I. Munteanu, and A. I Nistor, Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Phys. 22 (2015), no. 3, 428-447. https://doi.org/10.1080/14029251.2015.1079426
- S. L. Druta-Romaniuc and M. I. Munteanu, Magnetic curves corresponding to Killing magnetic fields in E3, J. Math. Phys. 52 (2011), no. 11, 113506.
- N. Ekmekci and K. Ilarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3 (2001), no. 2, 17-24.
- D. Fuchs, Evolutes and involutes of spatial curves, Amer. Math. Monthly 120 (2013), no. 3, 217-231. https://doi.org/10.4169/amer.math.monthly.120.03.217
- T. Fukunaga and M. Takahashi, Evolutes and involutes of frontals in the Euclidean plane, Demonstratio Mathematica 48 (2015), no. 2, 147-166. https://doi.org/10.1515/dema-2015-0015
- J. I. Inoguchi and M. I. Munteanu, Magnetic curves in the real special linear group, arXiv preprint arXiv:1811.11993. (2018). https://doi.org/10.4310/ATMP.2019.v23.n8.a6
- S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom. 74 (2002).
- M. Jleli and M. I. Munteanu, Magnetic curves on flat para-K ahler manifolds, Turkish J. Math. 39 (2015), no. 6, 963-969. https://doi.org/10.3906/mat-1503-40
- G. U. Kaymanli, C. Ekici, and M. Dede, On the directional associated curves of timelike space curve, In Conference Proceedings of Science and Technology. 2 (2018), no. 3, 173-179.
- T. Korpinar, On T-magnetic biharmonic particles with energy and angle in the three dimensional Heisenberg group H, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 9, 15 pp. https://doi.org/10.1007/s00006-018-0834-2
- T. Korpinar, A new version of normal magnetic force particles in 3D Heisenberg space, Adv. Appl. Clifford Algebr. 28 (2018), no. 4, Paper No. 83, 13 pp. https://doi.org/10.1007/s00006-018-0900-9
- T. Korpinar, A new velocity magnetic particles with flows by spherical frame, Differ. Equ. Dyn. Syst. (2018), 1-7.
- T. Korpinar, M. T. Sariaydin, and E. Turhan, Associated curves according to bishop frame in Euclidean 3-space, Adv. Model. Optimization 15 (2013), no. 3, 713-717.
- H. Liu and F. Wang, Mannheim partner curves in 3-space, J. Geom. 88 (2008), no. 1-2, 120-126. https://doi.org/10.1007/s00022-007-1949-0
- N. Macit and M. Duldul, Some new associated curves of a Frenet curve in E3 and E4, Turkish J. Math. 38 (2014), no. 6, 1023-1037. https://doi.org/10.3906/mat-1401-85
- M. Masal and A. Z. Azak, Mannheim B-curve in the Euclidean 3-space, Kuwait J. Sci. 44 (2017), no. 1, 36-41.
- H. Matsuda and S. Yorozu, Notes on Bertrand curves, ynu.repo.nii.ac.jp. (2003).
- M. I. Munteanu, Magnetic curves in a Euclidean space: one example, several approaches, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 141-150. https://doi.org/10.2298/PIM1308141M
- S. K. Nurkan, I. A. Guven, and M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (2019), no. 1, 155-161. https://doi.org/10.1007/s40010-017-0425-y
- B. O'Neill, Elementary Differential Geometry, revised second edition, Elsevier/Academic Press, Amsterdam, 2006.
- K. Orbay and E. Kasap, On Mannheim partner curves in E3, Int. J. Phys. Sci. 4 (2009), no. 5, 261-264. https://doi.org/10.1155/2009/160917
- E. Ozyilmaz and S. Yilmaz, Involute-evolute curve couples in the Euclidean 4-space, Int. J. Open Problems Compt. Math. 2 (2009), no. 2, 168-174.
- B. Sahiner, Some associated curves of binormal indicatrix of a curve in Euclidean 3-space, In 16 th International Geometry Symposium, p. 302, 2018.
- B. Sahiner and M. Onder, Slant helices, Darboux helices and similar curves in dual space D3, Mathematica Moravica. 20 (2016), no. 1, 1.