참고문헌
- O. Ahuja, S. Kumar, and A. Cetinkaya, Normalized multivalent functions connected with generalized Mittag-Leffler functions, Acta Univ. Apulensis Math. Inform. No. 67 (2021), 111-123. https://doi.org/10.17114/j.aua
- D. Bansal and K. Mehrez, On a new class of functions related with Mittag-Leffler and Wright functions and their properties, Commun. Korean Math. Soc. 35 (2020), no. 4, 1123-1132. https://doi.org/10.4134/CKMS.c200022
- G. A. Dorrego and R. A. Cerutti, The k-Mittag-Leffler function, Int. J. Contemp. Math. Sci. 7 (2012), no. 13-16, 705-716.
- Lj. Gajic and B. Stankovic, Some properties of Wright's function, Publ. Inst. Math. (Beograd) (N.S.) 20(34) (1976), 91-98.
- K. S. Gehlot, The p-k Mittag-Leffler function, Palest. J. Math. 7 (2018), no. 2, 628-632.
- P. Humbert, Quelques resultats relatifs a la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris 236 (1953), 1467-1468.
- R. J. Libera, Univalent α-spiral functions, Canadian J. Math. 19 (1967), 449-456. https://doi.org/10.4153/CJM-1967-038-0
- Y. Luchko, The Wright function and its applications, in Handbook of fractional calculus with applications. Vol. 1, 241-268, De Gruyter, Berlin, 2019.
- F. Mainardi and A. Consiglio, The Wright functions of the second kind in Mathematical Physics, Mathematics 8 (2020), no. 6, 1-26. https://doi.org/10.3390/math8060884
- N. Mustafa, Univalence of certain integral operators involving normalized Wright functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66 (2017), no. 1, 19-28. https://doi.org/10.1501/Commua1_0000000771
- J. K. Prajapat, Certain geometric properties of the Wright function, Integral Transforms Spec. Funct. 26 (2015), no. 3, 203-212. https://doi.org/10.1080/10652469.2014.983502
- A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007), no. 2, 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
- L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pro Pestovani Matematiky a Fysiky 62 (1933), 12-19. https://doi.org/10.21136/CPMF.1933.121951
- A. Wiman, Uber den Fundamentalsatz in der Teorie der Funktionen Ea(x), Acta Math. 29 (1905), no. 1, 191-201. https://doi.org/10.1007/BF02403202
- E. M. Wright, On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71