DOI QR코드

DOI QR Code

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong (Department of Food Science and Biotechnology, Ewha Womans University) ;
  • Byoung Sik Kim (Department of Food Science and Biotechnology, Ewha Womans University)
  • Received : 2022.07.29
  • Accepted : 2022.09.30
  • Published : 2023.03.28

Abstract

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020R1F1A1070168) and the Ministry of Food and Drug Safety in 2022 (20162MFDS142) to B.S.K. The chemical library used in this study was kindly provided by the Korea Chemical Bank (www.chembank.org) of Korea Research Institute of Chemical Technology. We thank Dr. B.T. Kim at Korea Research Institute of Chemical Technology for depositing the Grlactin into the chemical library. We also thank Dr. S.H. Choi at Seoul National University for sharing the E. coli EDL933 ΔgrlA strain and HeLa cells. pCas and pTargetF were gifts from Sheng Yang (Addgene plasmid #62225 and #62226).

References

  1. Clatworthy AE, Pierson E, Hung DT. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3: 541-548. https://doi.org/10.1038/nchembio.2007.24
  2. Roope LSJ, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, et al. 2019. The challenge of antimicrobial resistance: What economics can contribute. Science 364: eaau4679.
  3. CDC. 2019. Antibiotic resistant threats in the United States. Available from https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed Aug. 24, 2022.
  4. O'Neill J. 2016. Tackling drug-resistant infections globally: final report and recommendations. Available from http://amrreview.org/Publications.html. Accessed Aug. 24, 2022.
  5. Tarr PI, Gordon CA, Chandler WL. 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073-1086. https://doi.org/10.1016/S0140-6736(05)71144-2
  6. Lee MS, Yoon JW, Tesh VL. 2020. Recent advances in understanding the pathogenesis of Shiga toxin-producing Shigella and Escherichia coli. Front. Cell. Infect. Microbiol. 10: 620703.
  7. Jeong YJ, Park SK, Yoon SJ, Park YJ, Lee MS. 2018. Experimental in vivo models of bacterial Shiga toxin-associated hemolytic uremic syndrome. J. Microbiol. Biotechnol. 28: 1413-1425. https://doi.org/10.4014/jmb.1803.03012
  8. Lee KS, Lee J, Lee P, Kim CU, Kim DJ, Jeong YJ, et al. 2020. Exosomes released from Shiga toxin 2a-treated human macrophages modulate inflammatory responses and induce cell death in toxin receptor expressing human cells. Cell Microbiol. 22: e13249.
  9. Kim JS, Lee MS, Kim JH. 2020. Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front. Cell. Infect. Microbiol. 10: 273.
  10. Freedman SB, Xie J, Neufeld MS, Hamilton WL, Hartling L, Tarr PI, et al. 2016. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin. Infect. Dis. 62: 1251-1258. https://doi.org/10.1093/cid/ciw099
  11. Moon H, Whipp S, Argenzio R, Levine M, Giannella R. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41: 1340-1351. https://doi.org/10.1128/iai.41.3.1340-1351.1983
  12. Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8: 26-38. https://doi.org/10.1038/nrmicro2265
  13. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839-7843. https://doi.org/10.1073/pnas.87.20.7839
  14. Knutton S, Baldwin T, Williams P, McNeish A. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57: 1290-1298. https://doi.org/10.1128/iai.57.4.1290-1298.1989
  15. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng Y, Lai LC, et al. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28: 1-4. https://doi.org/10.1046/j.1365-2958.1998.00783.x
  16. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33: 296-306. https://doi.org/10.1046/j.1365-2958.1999.01473.x
  17. Jarvis KG, Giron JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc. Natl. Acad. Sci. USA 92: 7996-8000. https://doi.org/10.1073/pnas.92.17.7996
  18. Naylor SW, Roe AJ, Nart P, Spears K, Smith DG, Low JC, et al. 2005. Escherichia coli O157: H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151: 2773-2781. https://doi.org/10.1099/mic.0.28060-0
  19. Franzin FM, Sircili MP. 2015. Locus of enterocyte effacement: A pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. BioMed Res. Int. 2015: 534738.
  20. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, et al. 2004. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. USA 101: 3597-3602. https://doi.org/10.1073/pnas.0400326101
  21. Barba J, Bustamante VH, Flores-Valdez MA, Deng W, Finlay BB, Puente JL. 2005. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. J. Bacteriol. 187: 7918-7930. https://doi.org/10.1128/JB.187.23.7918-7930.2005
  22. Beltrametti F, Kresse AU, Guzma?n CA. 1999. Transcriptional regulation of the esp genes of enterohemorrhagic Escherichia coli. J. Bacteriol. 181: 3409-3418. https://doi.org/10.1128/JB.181.11.3409-3418.1999
  23. Alsharif G, Ahmad S, Islam MS, Shah R, Busby SJ, Krachler AM. 2015. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc. Natl. Acad. Sci. USA 112: 5503-5508. https://doi.org/10.1073/pnas.1422986112
  24. Yang B, Feng L, Wang F, Wang L. 2015. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat. Commun. 6: 6592.
  25. Sirisaengtaksin N, Odem MA, Bosserman RE, Flores EM, Krachler AM. 2020. The E. coli transcription factor GrlA is regulated by subcellular compartmentalization and activated in response to mechanical stimuli. Proc. Natl. Acad. Sci. USA 117: 9519-9528. https://doi.org/10.1073/pnas.1917500117
  26. Kim SM, Kim HJ. 2017. Development of an HTS system to identify natural chemicals that specifically inhibit Escherichia coli O157:H7 adhesion to host cells. Food Control 73: 185-192. https://doi.org/10.1016/j.foodcont.2016.08.007
  27. Kim HJ, Kim SM. 2018. Inhibition of adhesion and biofilm formation in Escherichia coli O157: H7 by diosmin. Korean J. Food Sci. Technol. 50: 414-419.
  28. Hou M, Sun S, Feng Q, Dong X, Zhang P, Shi B, et al. 2020. Genetic editing of the virulence gene of Escherichia coli using the CRISPR system. PeerJ. 8: e8881.
  29. Kim BS, Jang SY, Bang Y-j, Hwang J, Koo Y, Jang KK, et al. 2018. QStatin, a selective inhibitor of quorum sensing in Vibrio species. mBio 9: e02262-02217.
  30. Dibb-Fuller M, Best A, Stagg D, Cooley W, Woodward M. 2001. An in-vitro model for studying the interaction of Escherichia coli O157: H7 and other enteropathogens with bovine primary cell cultures. J. Med. Microbiol. 50: 759-769. https://doi.org/10.1099/0022-1317-50-9-759
  31. Dahan S, Knutton S, Shaw RK, Crepin VF, Dougan G, Frankel G. 2004. Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect. Immun. 72: 5452-5459. https://doi.org/10.1128/IAI.72.9.5452-5459.2004
  32. Falkow S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect.Dis. Suppl 2: S274-S276. https://doi.org/10.1093/cid/10.Supplement_2.S274
  33. Falkow S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity-a personal recollection 15 years later. Nat. Rev. Microbiol. 2: 67-72. https://doi.org/10.1038/nrmicro799
  34. Lee Z-W, Kim BS, Jang KK, Bang Y-J, Kim S, Ha N-C, et al. 2019. Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species. Sci. Rep. 9: 4346.
  35. Padavannil A, Jobichen C, Mills E, Velazquez-Campoy A, Li M, Leung KY, et al. 2013. Structure of GrlR-GrlA complex that prevents GrlA activation of virulence genes. Nat. Commun. 4: 2546.
  36. Sperandio V, Mellies JL, Delahay RM, Frankel G, Crawford JA, Nguyen W, et al. 2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol. Microbiol. 38: 781-793. https://doi.org/10.1046/j.1365-2958.2000.02168.x
  37. Bustamante VcH, Santana FJ, Calva E, Puente JL. 2001. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 39: 664-678. https://doi.org/10.1046/j.1365-2958.2001.02209.x
  38. Russell RM, Sharp FC, Rasko DA, Sperandio V. 2007. QseA and GrlR/GrlA regulation of the locus of enterocyte effacement genes in enterohemorrhagic Escherichia coli. J. Bacteriol. 189: 5387-5392. https://doi.org/10.1128/JB.00553-07
  39. Furniss RCD, Clements A. 2018. Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J. Bacteriol. 200: e00336-00317.
  40. Lim JG, Bang Y-J, Choi SH. 2014. Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation. J. Biol. Chem. 289: 36263-36274. https://doi.org/10.1074/jbc.M114.611020
  41. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82. https://doi.org/10.1016/j.cell.2004.06.009
  42. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S, et al. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81: 2506-2514.  https://doi.org/10.1128/AEM.04023-14