참고문헌
- Y. Amirat and K. Hamdache, Weak solutions to the equations of motion for compressible magnetic fluids, J. Math. Pures Appl. (9) 91 (2009), no. 5, 433-467. https://doi.org/ 10.1016/j.matpur.2009.01.015
- B. Berkovski and V. Bashtovoy, Magnetic Fluids and Applications Handbook, Begell House, New York, 1996.
- J. Brezina and Y. Kagei, Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow, J. Differential Equations 255 (2013), no. 6, 1132-1195. https://doi.org/10.1016/j.jde.2013.04.036
- H. Cai and Z. Tan, Periodic solutions to the compressible magnetohydrodynamic equations in a periodic domain, J. Math. Anal. Appl. 426 (2015), no. 1, 172-193. https://doi.org/10.1016/j.jmaa.2015.01.038
- H. Cai and Z. Tan, Time periodic solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1847-1868. https://doi.org/10.3934/dcds.2016.36.1847
- P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511626333
- A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1-18. https://doi.org/10.1512/iumj.1967.16.16001
- E. Feireisl, S. Matusu-Necasova, H. Petzeltova, and I. Straskraba, On the motion of a viscous compressible fluid driven by a time-periodic external force, Arch. Ration. Mech. Anal. 149 (1999), no. 1, 69-96. https://doi.org/10.1007/s002050050168
- E. Feireisl, P. B. Mucha, A. Novotny, and M. Pokorny, Time-periodic solutions to the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal. 204 (2012), no. 3, 745-786. https://doi.org/10.1007/s00205-012-0492-9
- P. M. Hatzikonstantinou and P. Vafeas, A general theoretical model for the magnetohydrodynamic flow of micropolar magnetic fluids. Application to Stokes flow, Math. Methods Appl. Sci. 33 (2010), no. 2, 233-248. https://doi.org/10.1002/mma.1170
- C. Jin and T. Yang, Time periodic solution for a 3-D compressible Navier-Stokes system with an external force in ℝ3, J. Differential Equations 259 (2015), no. 7, 2576-2601. https://doi.org/10.1016/j.jde.2015.03.035
- C. Jin and T. Yang, Time periodic solution to the compressible Navier-Stokes equations in a periodic domain, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 4, 1015-1029. https://doi.org/10.1016/S0252-9602(16)30055-8
- Y. Kagei and K. Tsuda, Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry, J. Differential Equations 258 (2015), no. 2, 399-444. https://doi.org/10.1016/j.jde.2014.09.016
- H. Ma, S. Ukai, and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations 248 (2010), no. 9, 2275-2293. https://doi.org/10.1016/j.jde.2009.11.031
- R. Moreau, Magnetohydrodynamics, translated from the French by A. F. Wright, Fluid Mechanics and its Applications, 3, Kluwer Acad. Publ., Dordrecht, 1990. https://doi.org/10.1007/978-94-015-7883-7
- P. K. Papadopoulos, P. Vafeas, and P. M. Hatzikonstantinou, Ferrofluid pipe flow under the influence of the magnetic field of a cylindrical coil, Phys. Fluids 24 (2012), 122002.
- R. E. Rosensweig, Ferrohydrodynamics, Dover Publications, New York, 1997.
- Z. Tan and Q. Xu, On the motion of the 3D compressible micropolar fluids with time periodic external forces, J. Math. Phys. 59 (2018), no. 8, 081511, 28 pp. https://doi.org/10.1063/1.5051990
- Z. Tan and H. Wang, Time periodic solutions of the compressible magnetohydrodynamic equations, Nonlinear Anal. 76 (2013), 153-164. https://doi.org/10.1016/j.na.2012.08.012
- K. Tsuda, On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space, Arch. Ration. Mech. Anal. 219 (2016), no. 2, 637-678. https://doi.org/10.1007/s00205-015-0902-x
- A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 607-647.
- R. Y. Wei, B. Guo, and Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differential Equations 263 (2017), no. 5, 2457-2480. https://doi.org/10.1016/j.jde.2017.04.002
- J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magnetomicropolar fluid equations, Math. Methods Appl. Sci. 31 (2008), no. 9, 1113-1130. https://doi.org/10.1002/mma.967
- P. Zhang, Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum, Bound. Value Probl. 2013 (2013), 160, 16 pp. https://doi.org/10.1186/1687-2770-2013-160
- P. Zhang, Decay of the compressible magneto-micropolar fluids, J. Math. Phys. 59 (2018), no. 2, 023102, 11 pp. https://doi.org/10.1063/1.5024795
- X. Zhang and H. Cai, Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain, Z. Angew. Math. Phys. 71 (2020), no. 6, Paper No. 184, 24 pp. https://doi.org/10.1007/s00033-020-01409-2