DOI QR코드

DOI QR Code

Efficient Elimination of Tetracycline by Ferrate (VI): Real Water Implications

  • Levia Lalthazuala (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Lalhmunsiama Lalhmunsiama (Department of Industrial Chemistry, School of Physical Sciences, Mizoram University) ;
  • Ngainunsiami Ngainunsiami (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Diwakar Tiwari (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Seung Mok Lee (Department of Biosystem and Convergence, Catholic Kwandong University) ;
  • Suk Soon Choi (Department of Biological and Environmental Engineering, Semyung University)
  • Received : 2023.02.03
  • Accepted : 2023.03.21
  • Published : 2023.06.10

Abstract

The detection of antibiotics in treated wastewater is a global concern as it enters water bodies and causes the development of antibiotic resistance genes in humans and marine life. The study specifically aims to explore the potential of ferrate (VI) in eliminating tetracycline (TCL). The degradation of TCL is optimized with parametric studies, viz., the effect of pH and concentration, which provide insights into TCL elimination. The increase in pH (from 7.0 to 10.0) favors the percentage removal of TCL; however, the increase in TCL concentrations from 0.02 to 0.3 mmol/L caused a decrease in percentage TCL removal from 97.4 to 29.1%, respectively, at pH 10.0. The time-dependent elimination of TCL using ferrate (VI) followed pseudosecond-order rate kinetics, and an apparent rate constant (kapp) was found at 1978.8 L2 /mol2 /min. Coexisting ions, i.e., NaNO3, Na2HPO4, NaCl, and oxalic acid, negligibly affect the oxidation of TCL by ferrate (VI). However, EDTA and glycine significantly inhibited the elimination of TCL using ferrate (VI). The mineralization of TCL using ferrate (VI) was favored at higher pH, and it increased from 18.57 to 32.52% when the solution pH increased from pH 7.0 to 10.0. Additionally, the real water samples containing a relatively high level of inorganic carbon spiked with TCL revealed that ferrate (VI) performance in the removal of TCL was unaffected, which further inferred the potential of ferrate (VI) in real implications.

Keywords

Acknowledgement

One of the author DT acknowledges the CSIR, New Delhi providing the financial assistance in the form of Extra Mural Research Grant vide No. 24(354)/18-EMR-II.

References

  1. Y. M. Hunge, A. A. Yadav, S. W. Kang, H. Kim, A. Fujishima, and C. Terashima, Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications, J. Hazard. Mater., 419, 126453 (2021). 
  2. V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices - A review, J. Environ. Manage., 92, 2304-2347 (2011).  https://doi.org/10.1016/j.jenvman.2011.05.023
  3. A. A. Yadav, Y. M. Hunge, S. B. Kulkarni, C. Terashima, and S. W. Kang, Three-dimensional nanoflower-like hierarchical array of multifunctional copper cobaltate electrode as efficient electrocatalyst for oxygen evolution reaction and energy storage application, J. Colloid Interface Sci., 576, 476-485 (2020).  https://doi.org/10.1016/j.jcis.2020.04.100
  4. S. Li and J. Hu, Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms, J. Hazard. Mater., 318, 134-144 (2016).  https://doi.org/10.1016/j.jhazmat.2016.05.100
  5. Y. Wang, H. Zhang, J. Zhang, C. Lu, Q. Huang, and J. Wu, F. Liu, Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor, J. Hazard. Mater., 192, 35-43 (2011). 
  6. Q. Liu, Y. Zheng, L. Zhong, and X. Cheng, Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat, J. Environ. Sci., 28, 29-36 (2015).  https://doi.org/10.1016/j.jes.2014.04.016
  7. B. L. Phoon, C. C. Ong, S. Mohamed, P. L. Show, J. S. Chang, T. C. Ling, S. S. Lam, and J. C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater., 400, 122961 (2020). 
  8. X. S. Miao, F. Bishay, M. Chen, and C. Metcalfe, Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada, Environ. Sci. Technol., 38, 3533-3541 (2004).  https://doi.org/10.1021/es030653q
  9. U. Von Gunten, Oxidation processes in water treatment: Are we on track?, Environ. Sci. Technol., 52, 5062-5075 (2018).  https://doi.org/10.1021/acs.est.8b00586
  10. D. Xia, W. Xu, Y. Wang, J. Yang, Y. Huang, L. Hu, C. He, D. Shu, D. Y. C. Leung, and Z. Pang, Enhanced performance and conversion pathway for catalytic ozonation of methyl mercaptan on single-atom ag deposited three-dimensional ordered mesoporous MnO2, Environ. Sci. Technol., 52, 13399-13409 (2018).  https://doi.org/10.1021/acs.est.8b03696
  11. H. Monteil, Y. Pechaud, N. Oturan, and M. A. Oturan, A review on efficiency and cost effectiveness of electro- and bio-electroFenton processes: Application to the treatment of pharmaceutical pollutants in water, Chem. Eng. J., 376, 119577 (2019). 
  12. J. Lee, U. von Gunten, and J. H. Kim, Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks, Environ. Sci. Technol., 54, 3064-3081(2020).  https://doi.org/10.1021/acs.est.9b07082
  13. J. Wang and H. Chen, Catalytic ozonation for water and wastewater treatment: Recent advances and perspective, Sci. Total Environ., 704, 135249 (2020). 
  14. S. Zhang, M. Sun, T. Hedtke, A. Deshmukh, X. Zhou, S. Weon, M. Elimelech, and J. H. Kim, Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement, Environ. Sci. Technol., 54, 10868-10875 (2020).  https://doi.org/10.1021/acs.est.0c02192
  15. Y. Chen, J. Yang, L. Zeng, and M. Zhu, Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process, Crit. Rev. Environ. Sci. Technol., 52, 1401-1448 (2022).  https://doi.org/10.1080/10643389.2020.1859289
  16. V. K. Sharma, Li X zhong, N. Graham, and R. Doong, Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water, Aqua, 57, 419-426  (2008). https://doi.org/10.2166/aqua.2008.077
  17. D. Tiwari and S. M. Lee, Ferrate(VI) in the treatment of wastewaters: A new generation green chemical, In: Fernando Sebastian Garcia Einschlag (ed.). Waste Water: Treatment and Reutilization, 241-276, Intech, Rijeka, Croatia (2011). 
  18. Q. Han, W. Dong, H. Wang, T. Liu, Y. Tian, and X. Song, Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control, Chemosphere, 198, 92-102 (2018).  https://doi.org/10.1016/j.chemosphere.2018.01.117
  19. V. K. Sharma, Disinfection performance of Fe(VI) in water and wastewater: A review, Water Sci. Technol., 55, 225-232 (2007).  https://doi.org/10.2166/wst.2007.019
  20. Y. Liu, L. Wang, Z. Huang, X. Wang, X. Zhao, Y. Ren, S. Sun, M. Xue, J. Qi, and J. Ma, Oxidation of odor compound indole in aqueous solution with ferrate (VI): Kinetics, pathway, and the variation of assimilable organic carbon, Chem. Eng. J., 331, 31-38 (2018).  https://doi.org/10.1016/j.cej.2017.07.171
  21. P. Zajicek, M. Kolar, R. Prucek, V. Ranc, P. Bednar, R. S. Varma, V. K. Sharma, and R. Zboril, Oxidative degradation of triazineand sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products, Sep. Purif. Technol., 156, 1041-1046 (2015).  https://doi.org/10.1016/j.seppur.2015.08.024
  22. A. Talaiekhozani, M. R. Talaei, and S. Rezania, An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater, J. Environ. Chem. Eng., 5, 1828-1842 (2017).  https://doi.org/10.1016/j.jece.2017.03.025
  23. R. Prucek, J. Tucek, J. Kolarik, J. Filip, Z. Marusak, V. K. Sharma, and R. Zboril, Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles, Environ. Sci. Technol., 47, 3283-3292 (2013).  https://doi.org/10.1021/es3042719
  24. R. Prucek, J. Tucek, J. Kolarik, I. Huskova, J. Filip, R. S. Varma, V. K. Sharma, and R. Zboril, Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides, Environ. Sci. Technol., 49, 2319-2327 (2015).  https://doi.org/10.1021/es5048683
  25. J. Q. Jiang and S. Wang, Panagoulopoulos A., The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006).  https://doi.org/10.1016/j.chemosphere.2005.08.020
  26. L. Hu, M. A. Page, T. Sigstam, T. Kohn, B. J. Marinas and T. J Strathmann, Inactivation of bacteriophage MS2 with potassium ferrate(VI), Environ. Sci. Technol., 46, 12079-12087 (2012).  https://doi.org/10.1021/es3031962
  27. V. Sharma, F. Kazama, J. Hu and A. Ray, Ferrates (iron(VI) and iron(V)): Environmentally friendly oxidants and disinfectants, J. Water Health., 3, 45-58 (2005).  https://doi.org/10.2166/wh.2005.0005
  28. G. A. K. Anquandah, V. K. Sharma, V. R. Panditi, P. R. Gardinali, H. Kim and M. A. Oturan, Ferrate(VI) oxidation of propranolol: Kinetics and products, Chemosphere, 91, 105-109 (2013).  https://doi.org/10.1016/j.chemosphere.2012.12.001
  29. V. K. Sharma, F. Liu, S. Tolan, M. Sohn, H. Kim and M. A. Oturan, Oxidation of β-lactam antibiotics by ferrate(VI), Chem. Eng. J., 221, 446-451 (2013).  https://doi.org/10.1016/j.cej.2013.02.024
  30. M. Feng, J. C. Baum, N. Nesnas, Y. Lee, C. H. Huang, and V. K. Sharma, Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(VI): Kinetics and mechanistic insight into SO2 extrusion, Environ. Sci. Technol., 53, 2695-2704 (2019).  https://doi.org/10.1021/acs.est.8b06535
  31. J. Q. Jiang, Z. Zhou, and O. Pahl, Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI), Sep. Purif. Technol., 88, 95-98 (2012).  https://doi.org/10.1016/j.seppur.2011.12.021
  32. L. Lalthazuala, Lalhmunsiama, D. Tiwari, and S. M. Lee, Efficient use of Ferrate(VI) in the remediation of aqueous solutions contaminated with potential micropollutants: Simultaneous removal of triclosan and amoxicillin, Indian J. Biochem. Biophys., 58, 532-542 (2021). 
  33. J. Zhao, Y. Liu, Q. Wang, Y. Fu, X. Lu, and X. Bai, The self-catalysis of ferrate (VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: Kinetics, mechanism and transformation products, Sep. Purif. Technol., 192, 412-418 (2018).  https://doi.org/10.1016/j.seppur.2017.10.030
  34. D. Tiwari, L. Sailo, and L. Pachuau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI), Sep. Purif. Technol., 132, 77-83 (2014).  https://doi.org/10.1016/j.seppur.2014.05.010
  35. D. Tiwari, L. Sailo, Y. Y. Yoon, and S. M. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions, Environ. Eng. Res., 23, 129-135 (2018). 
  36. L. Lalthazuala, D. Tiwari, S. M. Lee, and S. S. Choi, Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment, Appl. Chem. Eng., 32, 340-347 (2021). 
  37. D. Tiwari, L. Sailo, S. I. Choi, Y. Y. Yoon, and S. M. Lee, Efficient oxidative removal of 4-tert-octylphenol and 17α -ethynylestradiol from aqueous solutions using ferrate(VI), Korean J. Chem. Eng., 34, 734-740 (2017).  https://doi.org/10.1007/s11814-016-0324-y
  38. L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micropollutants from aqueous solutions using ferrate (VI): Physicochemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017). 
  39. J. Chen, X. Xu, X. Zeng, M. Feng, R. Qu, Z. Wang, N. Nesnas, and V. K. Sharma, Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products, Water Res., 143, 1-9 (2018). 
  40. W. Limmun, N. Ishikawa, J. Momotori, M. Terasaki, T. Sato, K. Kikuchi, M. Sasamoto, T. Umita, and A. Ito, Degradation of the endocrine-disrupting 4-nonylphenol by ferrate(VI): biodegradability and toxicity evaluation, Environ. Sci. Pollut. Res., 29, 18882-18890 (2022).  https://doi.org/10.1007/s11356-021-17167-1
  41. A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S. Polo, M .S. Berber-Mendoza, and M. V. Lopez-Ramon, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment, J. Environ. Manage., 255, 109927 (2020). 
  42. S. Sanli, N. Sanli, and G. Alsancak, Determination of protonation constants of some tetracycline antibiotics by potentiometry and lc methods in water and acetonitrile-water binary mixtures, J. Braz. Chem. Soc., 20, 939-946 (2009). 
  43. N. Noorhasan, B. Patel, and V. K. Sharma, Ferrate(VI) oxidation of glycine and glycylglycine: Kinetics and products, Water Res., 44, 927-935 (2010).  https://doi.org/10.1016/j.watres.2009.10.003
  44. B. H. J. Bielski, V. K. Sharma, and G. Czapski, Reactivity of ferrate(V) with carboxylic acids: A pre-mix pulse radiolysis study, Radiat. Phys. Chem., 44, 479-484 (1994).  https://doi.org/10.1016/0969-806X(94)90044-2
  45. N. N. Noorhasan and V. K. Sharma, Kinetics of the reaction of aqueous iron(vi) (FeVIO42-) with ethylenediaminetetraacetic acid, Dalton Trans., 1883-1887 (2008).