DOI QR코드

DOI QR Code

Structural and Electrical Properties of La0.7Sr0.3-xMgxMnO3 Ceramics with MgO Content

MgO 첨가에 따른 La0.7Sr0.3-xMgxMnO3 세라믹스의 구조적, 전기적 특성

  • Hyun-Tae Kim (Major in Ceramic Engineering, School of Materials Science and Engineering, Gyeongsang National University) ;
  • Jeong-Eun Lim (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Byeong-Jun Park (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sam-Haeng Yi (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Myung-Gyu Lee (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Joo-Seok Park (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Young-Gon Kim (Department of Electronics, Chosun College of Science and Technology) ;
  • Sung-Gap Lee (Major in Ceramic Engineering, School of Materials Science and Engineering, Gyeongsang National University)
  • 김현태 (경상국립대학교 나노신소재공학부 세라믹공학전공) ;
  • 임정은 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박병준 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이삼행 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이명규 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박주석 (한국세라믹기술원 기업지원본부) ;
  • 김영곤 (조선이공대학 전자과) ;
  • 이성갑 (경상국립대학교 나노신소재공학부 세라믹공학전공)
  • Received : 2023.02.24
  • Accepted : 2023.03.13
  • Published : 2023.05.01

Abstract

La0.7Sr0.3-xMgxMnO3 (LSMMO) (x=0.05~0.20) specimens are fabricated by a solid phase sintering method, and the sintering temperature and time are 1,300℃ and 2 hours, respectively. The dependence of the crystalline structure according to the amount of Mg2+ contents is not observed, and all specimens show a polycrystalline rhombohedral crystal structure, the X-ray diffraction (110) peaks move to the high angle side with increasing the amount of Mg2+ contents. LSMMO specimens exhibit a granule-shaped microstructure with an average grain size of 1 ㎛ or less. Resistivity gradually decrease as the amount of Mg2+ contents increased. And in the La0.7Sr0.1Mg0.2MnO3 specimen, resistivity and B25/65-value are 36.7 Ω-cm and 394 K at room temperature, respectively. LSMMO specimens show a variable-range hopping (VRH) electrical conduction mechanism, and the negative temperature of coefficient of resistance (NTCR) is approximately 0.37~0.38%/℃.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1I1A3052426), and the Technology Innovation Program (20020478, Development of commercial reference materials for chemical composition of nano-grade aluminum oxide for rechargeable battery separator coating) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. K. Das, P. Dasgupta, A. Poddar, and I. Das, Sci. Rep., 6, 20351 (2016). [DOI: https://doi.org/10.1038/srep20351]
  2. J. Heremans, J. Phys. D: Appl. Phys., 26, 1149 (1993). [DOI: https://doi.org/10.1088/0022-3727/26/8/001]
  3. Y. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Nat. Mater., 13, 1019 (2014). [DOI: https://doi.org/10.1038/NMAT4058]
  4. J. E. Lim, B. J. Park, S. H. Yi, M. G. Lee, J. S. Park, B. C. Kim, Y. G. Kim, and S. G. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 499 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.5.12]
  5. J. Topfer and J. B. Goodenough, J. Solid State Chem., 130, 117 (1997). [DOI: https://doi.org/10.1006/jssc.1997.7287]
  6. H. J. Sun and C. S. Park, J. Korean Phys. Soc., 57, 994 (2010). [DOI: https://doi.org/10.3938/jkps.57.994]
  7. Q. Song, G. Wang, G. Yan, Q. Mao, W. Wang, and Z. Peng, J. Rare Earths, 26, 821 (2008). [DOI: https://doi.org/10.1016/s1002-0721(09)60014-4]
  8. L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett., 79, 1710 (1997). [DOI: https://doi.org/10.1103/PhysRevLett.79.1710]
  9. H. Zhang, T. Lin, L. Zhao, H. Jiang, and A. Chang, J. Mater. Sci.: Mater. Electron., 28, 14195 (2017). [DOI: https://doi.org/10.1007/s10854-017-7276-9]
  10. A. N. Kamlo, J. Bernard, C. Lelievre, and D. Houivet, J. Eur. Ceram. Soc., 31, 1457 (2011). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.12.025]
  11. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 54, R15622 (1996). [DOI: https://doi.org/10.1103/PhysRevB.54.R15622]
  12. D. Shi, S. Chen, D. Liu, L. Xu, H. Xiao, C. Yang, and K. Wang, Curr. Appl. Phys., 15, 864 (2015). [DOI: https://doi.org/10.1016/j.cap.2015.03.024]
  13. E. D. Macklen, Thermistors (Electrochemical Publications Ltd. Scotland, 1979) p. 33.
  14. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B, 51, 14103 (1995). [DOI: https://doi.org/10.1103/PhysRevB.51.14103]
  15. N. Mott, Conduction in Non-Crystalline Materials, Clarendon, Oxford, 1993.
  16. A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys., 8, L49 (1975). [DOI: https://doi.org/10.1088/0022-3719/8/4/003]