DOI QR코드

DOI QR Code

Advanced Dry Etch Process with Low Global Warming Potential Gases Toward Carbon Neutrality

반도체 탄소 중립을 위한 친환경 가스 기반 식각 공정 연구

  • Jeonga Ju (Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jinkoo Park (Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Joonki Suh (Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Hongsik Jeong (Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 주정아 (울산과학기술원 반도체소재부품대학원) ;
  • 박진구 (울산과학기술원 반도체소재부품대학원) ;
  • 서준기 (울산과학기술원 반도체소재부품대학원) ;
  • 정홍식 (울산과학기술원 반도체소재부품대학원)
  • Received : 2023.01.08
  • Accepted : 2023.01.26
  • Published : 2023.03.01

Abstract

Currently, semiconductor manufacturing industry heavily relies on a wide range of high global warming potential (GWP) gases, particularly during etching and cleaning processes, and their use and relevant carbon emissions are subject to global rules and regulations for achieving carbon neutrality by 2050. To replace high GWP gases in near future, dry etching using alternative low GWP gases is thus being under intense investigations. In this review, we report a current status and recent progress of the relevant research activities on dry etching processes using a low GWP gas. First, we review the concept of GWP itself and then introduce the difference between high and low GWP gases. Although most of the studies have concentrated on potentially replaceable additive gases such as C4F8, an ultimate solution with a lower GWP for main etching gases including CF4 should be developed; therefore, we provide our own perspective in this regard. Finally, we summarize the advanced dry etch process research with low GWP gases and list up several issues to be considered in future research.

Keywords

Acknowledgement

This work was supported by the MOTIE (Ministry of Trade, Industry & Energy) (No.1415180209, Development of ecofriendly hydrofluoroolefin dry etching gas with high etching gas manufacturing technology). This work was also partially supported by UNIST research fund (1.220024.01).

References

  1. F. Illuzzi and H. Thewissen, J. Integr. Environ. Sci., 7, 201 (2010). [DOI: https://doi.org/10.1080/19438151003621417]
  2. M. T. Radoiu, Radiat. Phys. Chem., 69, 113 (2004). [DOI: https://doi.org/10.1016/S0969-806x(03)00455-9]
  3. L. Pruette, S. Karecki, R. Reif, L. Tousignant, W. Reagan, S. Kesari, and L. Zazzera, J. Electrochem. Soc., 147, 1149 (2000). [DOI: https://doi.org/10.1149/1.1393328]
  4. E.L.F. Schipper, Rev. Eur. Community Int. Environ. Law, 15, 82 (2006). [DOI: https://doi.org/10.1111/j.1467-9388.2006.00501.x]
  5. J. P. Chang and J. W. Coburn, J. Vac. Sci. Technol., A, 21, S145 (2003). [DOI: https://doi.org/10.1116/1.1600452]
  6. Samsung Semiconductor USA, Lesser Emissions, More Sustainable Our Efforts to Reduce Greenhouse Gas, https://semiconductor.samsung.com/us/sustainability/environment/climate-action/we-arae-minimizing-greenhouse-gases-until-we-hit-zero.
  7. Taiwan Semiconductor Manufacturing Company, Ltd., TSMC Fluorinated Greenhouse Gas (F-GHGs) Emissions Reduction Declaration for Y2021, https://esg.tsmc.com/download/file/esg_greenhouse_gas_inventory_e.pdf
  8. Intel Newsroom, Net-Zero Greenhouse Gas Emissions in Operations, Intel Commits to Net-Zero Greenhouse Gas Emissions in its Global Operations by 2040, https://www. intel.com/content/www/us/en/newsroom/news/net-zero-greenhouse-gas-emissions-operations.html
  9. A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, Science, 259, 194 (1993). [DOI: https://doi.org/10.1126/science.259.5092.194]
  10. F. Fracassi, R. d'Agostino, and F. Illuzzi, J. Vac. Sci. Technol., B, 19, 427 (2001). [DOI: https://doi.org/10.1116/1.1354978]
  11. Y. Miyawaki, Y. Kondo, M. Sekine, K. Ishikawa, T. Hayashi, K. Takeda, H. Kondo, A. Yamazaki, A. Ito, H. Matsumoto, and M. Hori, Jpn. J. Appl. Phys., 52, 016201 (2012). [DOI: https://doi.org/10.7567/JJAP.52.016201]
  12. H. W. Tak, H. J. Lee, L. Wen, B. J. Kang, D. Sung, J. W. Bae, D. W. Kim, W. Lee, S. B. Lee, K. Kim, B. O. Cho, Y. L. Kim, H. D. Song, and G. Y. Yeom, Appl. Surf. Sci., 600, 154050 (2022). [DOI: https://doi.org/10.1016/j.apsusc.2022.154050]
  13. H. W. Tak, J. K. Jang, D. Sung, D. S. Kim, D. W. Kim, and G. Y. Yeom, Mater. Express, 10, 834 (2020). [DOI: https://doi.org/10.1166/mex.2020.1777]
  14. X. Li, X. Hua, L. Ling, G. S. Oehrlein, M. Barela, and H. M. Anderson, J. Vac. Sci. Technol., A, 20, 2052 (2002). [DOI: https://doi.org/10.1116/1.1517256]
  15. M. Y. Yoon, H. J. Yeom, J. H. Kim, W. Chegal, Y. J. Cho, D. C. Kwon, J. R. Jeong, and H. C. Lee, Physics of Plasmas, 28, 063504 (2021). [DOI: https://doi.org/10.1063/5.0047811]
  16. D. Sung, L. Wen, H. Tak, H. Lee, D. Kim, and G. Yeom, Materials, 15, 1300 (2022). [DOI: https://doi.org/10.3390/ma15041300]
  17. H. Rhee, H. Kwon, C. K. Kim, H. J. Kim, J. Yoo, and Y. W. Kim, J. Vac. Sci. Technol., B, 26, 576 (2008). [DOI: https://doi.org/10.1116/1.2884763]
  18. H. Rhee, H. M. Lee, Y. M. Namkoung, C. K. Kim, H. Chae, and Y. W. Kim, J. Vac. Sci. Technol., B, 27, 33 (2009). [DOI: https://doi.org/10.1116/1.3039690]
  19. T. Tran-Quinn and M. Lakritz, Proc. 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (IEEE, Cambridge, USA, 2008) p. 37. [DOI: https://doi.org/10.1109/ASMC.2008.4529003]
  20. S. Karecki, L. Pruette, R. Reif, T. Sparks, L. Beu, and V. Vartanian, J. Electrochem. Soc., 145, 4305 (1998). [DOI: https://doi.org/10.1149/1.1838955]
  21. S. Y. Kim, I. S. Park, and J. Ahn, Appl. Surf. Sci., 589, 153045 (2022). [DOI: https://doi.org/10.1016/j.apsusc.2022.153045]
  22. E. Soda, S. Kondo, S. Saito, Y. Ichihashi, A. Sato, H. Ohtake, and S. Samukawa, J. Vac. Sci. Technol., A, 26, 875 (2008). [DOI: https://doi.org/10.1116/1.2919137]
  23. H. S. Lee, K. C. Yang, S. G. Kim, Y. J. Shin, D. W. Suh, H. D. Song, N. E. Lee, and G. Y. Yeom, J. Vac. Sci. Technol., A, 36, 061306 (2018). [DOI: https://doi.org/10.1116/1.5027446]
  24. J. Lee, Y. Nam, J. Lee, H. W. Lee, and K. H. Kwon, Plasma Sci. Technol., 22, 105505 (2020). [DOI: https://doi.org/10.1088/2058-6272/ab9b5a]
  25. S. You, J. H. Kim, and C. K. Kim, Korean J. Chem. Eng., 39, 63 (2022). [DOI: https://doi.org/10.1007/s11814-021-0987-x]
  26. Y. Kim, S. Kim, H. Kang, S. You, C. Kim, and H. Chae, ACS Sustainable Chem. Eng., 10, 10537 (2022). [DOI: https://doi.org/10.1021/acssuschemeng.2c017050]
  27. S. You, Y. J. Lee, H. Chae, and C. K. Kim, Coatings, 12, 679 (2022). [DOI: https://doi.org/10.3390/coatings12050679]