DOI QR코드

DOI QR Code

Multi-condition dynamic model control strategy of the direct drive motor of electric vehicles based on PIO-LightGBM algorithm

  • Fang Xie (School of Electrical Engineering and Automation, Anhui University) ;
  • Wenyu Zhang (School of Electrical Engineering and Automation, Anhui University) ;
  • Mengyuan Shen (School of Electrical Engineering and Automation, Anhui University) ;
  • Jinqiang Zhang (School of Electrical Engineering and Automation, Anhui University)
  • 투고 : 2022.06.12
  • 심사 : 2022.10.30
  • 발행 : 2023.03.20

초록

Permanent magnet synchronous motor (PMSM) is widely used in new energy vehicles. At present, to make electric vehicles have a wider speed range, the motor can reach the rated speed above through the field-weakening control. However, when the traditional field-weakening control strategy is above the rated speed, the dynamic response ability of the vehicle declines. Problems such as torque oscillation and current jump occur. To solve these problems, based on a pigeon-inspired optimization (PIO) algorithm and optimized light gradient boosting machine (LightGBM), the dynamic response capability of the permanent magnet synchronous motor is improved. The robust adaptability of the control system to disturbances and parameter changes is also further improved. By collecting experimental data, the importance of relevant variables is analyzed, and the variable with the largest weight is selected as the input of the model. PIO is used to optimize LightGBM, and the loss function is optimized. Finally, the regression model is established. Simulation and experimental results show that the method is effective.

키워드

과제정보

This work was supported by Natural Science Foundation of Anhui Province (2108085ME179) and National Natural Science Foundation of China (51607002).

참고문헌

  1. Meesala, R.E.K., Athikkal, S., Aruldavid, R.: Improved direct torque controlled PMSM Drive for electric vehicles. J. Inst. Eng. India Ser. B 103, 1177-1188 (2022). https://doi.org/10.1007/s40031-022-00716-8
  2. Zhu, S., Zhang, H.: Simplified model predictive current control strategy for open-winding permanent magnet synchronous motor drives. J. Power Electron. 21, 911-920 (2021). https://doi.org/10.1007/s43236-021-00237-5
  3. Deng, X., Li, M., Xu, M.: Sensorless control of printed permanent magnet synchronous motor. J. Power Electron. (2022). https://doi.org/10.1007/s43236-022-00521-y
  4. Zhang, Z., Chen, Y., Feng, X., et al.: Linear active disturbance rejection speed control with variable gain load torque sliding mode observer for IPMSMs. J. Power Electron. 22, 1290-1301 (2022). https://doi.org/10.1007/s43236-022-00429-7
  5. Liu, Z.-H., Nie, J., Wei, H.-L., Chen, L., Li, X.-H., Lv, M.-Y.: Switched PI control based MRAS for sensorless control of PMSM drives using fuzzy-logic-controller. IEEE Open J. Power Electron. 3, 368-381 (2022). https://doi.org/10.1109/OJPEL.2022.3182053
  6. Qian, X., Xiaorui, G., Haihong, Q., Ying, Z., Yaowen, D.: Research on the application of flux-weakening control in PMSM with wide range speed variation. Int. Conf. Smart Grid Electr Automation (ICSGEA) 2017, 371-374 (2017). https://doi.org/10.1109/ICSGEA.2017.32
  7. Ping, L., Lan, C.: Study on controlling and simulation of drive system for permanent magnet synchronous motor in electrical vehicle. Power Eng. Automation Conf. 2012, 1-4 (2012). https://doi.org/10.1109/PEAM.2012.6612509
  8. J. Wang, J. Wu, C. Gan and Q. Sun, "Comparative study of flux-weakening control methods for PMSM drive over wide speed range," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 2016, pp. 1-6.
  9. Sant, A.V., Rajagopal, K.R.: PM synchronous motor speed control using hybrid fuzzy-pi with novel switching functions. IEEE Trans. Magn. 45(10), 4672-4675 (2009). https://doi.org/10.1109/TMAG.2009.2022191
  10. Wang, A., Jia, X., Dong, S.: A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor. IEEE Trans. Magn. 49(5), 2409-2412 (2013). https://doi.org/10.1109/TMAG.2013.2240666
  11. Kuznetsov, V.E., Lukichev, A.N., Chung, P.T.: Speed control of permanent magnet synchronous motor with voltage surges reduction by means of adaptive control. IEEE Conf. Russian Young Res. Electr. Electron. Eng. (EIConRus) 2019, 590-594 (2019). https://doi.org/10.1109/EIConRus.2019.8657032
  12. Li, Z., Zhou, S., Xiao, Y., Wang, L.: Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller. IEEE Access 7, 44998-45011 (2019). https://doi.org/10.1109/ACCESS.2019.2909308
  13. Alfehaid, A.A., Strangas, E.G., Khalil, H.K.: Speed control of permanent magnet synchronous motor with uncertain parameters and unknown disturbance. IEEE Trans. Control Syst. Technol. 29(6), 2639-2646 (2021). https://doi.org/10.1109/TCST.2020.3026569
  14. Nguyen, T.H., Nguyen, T.T., Nguyen, V.Q., Le, K.M., Tran, H.N., Jeon, J.W.: An adaptive sliding-mode controller with a modified reduced-order proportional integral observer for speed regulation of a permanent magnet synchronous motor. IEEE Trans. Industr. Electron. 69(7), 7181-7191 (2022). https://doi.org/10.1109/TIE.2021.3102427
  15. Nguyen, A.T., Rafaq, M.S., Choi, H.H., Jung, J.: A model reference adaptive control based speed controller for a surface-mounted permanent magnet synchronous motor drive. IEEE Trans. Industr. Electron. 65(12), 9399-9409 (2018). https://doi.org/10.1109/TIE.2018.2826480
  16. He, Y., Wang, Z., Zheng, S.: "Decoupling control of high speed permanent magnet synchronous motor based on online least squares support vector machine inverse system method. Proc. CSEE 36, 5639-5646 (2016)
  17. Ding, Y., Xiao, X.: "Parameter tuning methods based on pole placement for PI controllers of flexible loads driven by PMSM. Proc. CSEE 37, 1225-1239 (2017)
  18. Shi, J., Liu, Y.: "Simple expert PID speed control of ultrasonic motors. Proc. CSEE 33, 120-125 (2013)
  19. Ke, D., Wang, F., Li, J.: Predictive current control of permanent magnet synchronous motor based on an adaptive high-gain observer. Proc. CSEE. 41, 728-738 (2021)
  20. Ju, Y., Sun, G., Chen, Q., Zhang, M., Zhu, H., Rehman, M.U.: A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. IEEE Access 7, 28309-28318 (2019). https://doi.org/10.1109/ACCESS.2019.2901920
  21. G. Ke et al., "LightGBM: A highly efficient gradient boosting decision tree", Proc. Adv. Neural Inf. Process. Syst., pp. 3146-3154, 2017.
  22. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29(5), 1189-1232 (2001) https://doi.org/10.1214/aos/1013203451