DOI QR코드

DOI QR Code

Validity of the Nielsen-type hanger arrangement in spatial arch bridges with straight decks

  • Mirian Canovas-Gonzalez (Civil Engineering Department, Universidad Politecnica de Cartagena (UPCT)) ;
  • Juan M. Garcia-Guerrero (Civil Engineering Department, Universidad Politecnica de Cartagena (UPCT)) ;
  • Juan J. Jorquera-Lucerga (Civil Engineering Department, Universidad Politecnica de Cartagena (UPCT))
  • Received : 2020.08.21
  • Accepted : 2023.03.13
  • Published : 2023.04.10

Abstract

In tied-arch bridges, a properly designed connection between the arch and the deck may become crucial, since the forces in the structure may be significantly reduced. This implies substantial material savings and, consequently, cheaper constructions. The introduction of the Nielsen cable arrangement (composed of V-shaped inclined hangers) in the last century was a milestone because it was able to reduce deflections and bending moments both in the arch and in the deck. So far, the Nielsen cable arrangement has proven to be successful in traditional vertical arch bridges. However, despite its advantages, it has not been widely applied to spatial arch bridges. Thus, this article analyses the difference between the structural behavior of spatial arch bridges with Nielsen-type cable arrangements with respect to those with classical vertical hanger configurations. The main goal is to verify whether the known effectiveness of the Nielsen cable arrangement for classical arch bridges is still preserved when applied to spatial arch bridges. In order to achieve this objective, and as the first part of our study, a set of different all-steel bridges composed of vertical and inclined arches with straight decks have been compared for both cable arrangements. As a major conclusion, for planar vertical arch bridges, the Nielsen-type cable arrangement is always the most effective. In addition, it also seems that, for spatial arch bridges composed of a straight deck and an inclined arch, it still keeps most of its effectiveness as long as the arch is moderately inclined.

Keywords

Acknowledgement

The authors wish to thank the Grant PID2021-126405OB-C33 funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe". In addition, the second and third authors wish to thank the Fundacion Seneca (Consejeria de Industria, Turismo, Empresa e Innovacion, Murcia Region, Spain), for the funding of the second author's research scholarship (FPI).

References

  1. Ammendolea, D., Greco, F., Blasi, P., Lonetti, P. and Pascuzzo, A. (2020), "Strategies to improve the structural integrity of tied-arch bridges affected by instability phenomena", Procedia Struct. Integr., 25, 454-464. https://doi.org/10.1016/j.prostr.2020.04.051.
  2. Canovas-Gonzalez, M., Garcia-Guerrero, J.M. and Jorquera-Lucerga, J.J. (2019), "Estudio parametrico de la validez del atirantamiento tipo Nielsen en puentes arco espaciales", Revista de Obras Publicas, 3609, 75-82.
  3. Computers and Structures, Inc. (2013), Analysis Reference Manual for SAP2000® v 16.
  4. De Backer, H., Outtier, A. and Van Bogaert, P. (2014), "Buckling design of steel tied-arch bridges", J. Constr. Steel Res., 103, 159-167. https://doi.org/10.1016/j.jcsr.2014.09.004.
  5. European Committee for Standardization (2003), EN 1991-2:2003: Eurocode 1: Actions on Structures. Part 3: Traffic Loads on Bridges.
  6. European Committee for Standardization (2006), EN 1993-1-11:2006: Eurocode 3: Design of Steel Structures. Part 1-11: Design of Structures with Tension Components.
  7. European Committee for Standardization (2006a), EN 1993-2:2006: Eurocode 3: Design of Steel Structures. Part 2: Steel Bridges.
  8. Garcia-Guerrero, J.M. (2018), The Spatial Arch Bridge as a Typological Evolution", (El puente arco espacial como una evolucion tipologica), Ph.D. Dissertation, Technical University of Cartagena, Cartagena, Spain.
  9. Garcia-Guerrero, J.M. and Jorquera-Lucerga, J.J. (2019), "Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges", Steel Compos. Struct., 32(4), 479-495. https://doi.org/10.12989/scs.2019.32.4.479.
  10. Gou, H., Yang, B., Guo, W. and Bao, Y. (2019), "Static and dynamic responses of a tied-arch railway bridge under train load", Struct. Eng. Mech., 71(1), 13-22. https://doi.org/10.12989/sem.2019.71.1.013.
  11. Gui, C., Lei, J., Yoda, T., Lin, W. and Zhang, Y. (2016), "Effects of inclination angle on buckling of continuous composite bridges with inclined parabolic arch ribs", Int. J. Steel Struct., 16, 361-372. https://doi.org/10.1007/s13296-016-6009-x.
  12. Hu, X., Xie, X., Tang, Z., Shen, Y., Wu, P. and Song, L. (2015), "Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs", Steel Compos. Struct., 18(1), 273-288. http://dx.doi.org/10.12989/scs.2015.18.1.273.
  13. Hudecek, M. (2017), Structural Behaviour of Spatial Arch Bridges, Ph.D. Dissertaton, Calgary University, Calgary, Canada.
  14. Jorquera-Lucerga, J.J. (2007), A Study on Structural Behaviour of Spatial Arch Bridges, Ph.D. Dissertation, Technical University of Madrid, Madrid, Spain. [In Spanish]
  15. Jorquera-Lucerga, J.J. (2013), "Understanding Calatrava's bridges: a conceptual approach to the 'La Devesa-type' footbridges", Eng. Struct., 56, 2083-2097. https://doi.org/10.1016/j.engstruct.2013.08.026.
  16. Karnowsky, I. (2012), Theory of Arched Structures, Springer, Berlin/Heidelberg, Germany.
  17. Laffranchi, M. and Marti, P. (1997), "Robert's Maillart's concrete arch bridges", J. Struct. Eng., 123(10), 1280-1286. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1280).
  18. Lebet, J.P. and Hirt, M.A. (2013), Steel Bridges, EPFL Press, Lausanne, Switzerland.
  19. Leonhardt, F. (1982), Bridges [Brucken], The Architectural Press, London, UK.
  20. Li, Y., Xiao, R.C. and Sun, B. (2017), "Study on design parameters of leaning-type arch bridges", Struct. Eng. Mech., 64(2), 225-232. http://dx.doi.org/10.12989/sem.2017.64.2.225.
  21. Ma, Y., Wang, Y., Su, L. and Mei, S. (2016), "Influence of creep on dynamic behavior of concrete filled steel tube arch bridges", Steel Compos. Struct., 21(1), 109-122. http://dx.doi.org/10.12989/scs.2016.21.1.109.
  22. Matlab (2014), Matlab R2014, The MathWorks Inc.
  23. Menn, C. (1989), Prestressed Concrete Bridges, Birkhauser Verlag, Vienna, Austria.
  24. Palkowski, S. (2012), "Buckling of parabolic arches with hangers and tie", Eng. Struct., 44, 128-132. https://doi.org/10.1016/j.engstruct.2012.05.028.
  25. Pfeifer (2020), https://www.pfeifer.de/emag/PFEIFERZugglieder/index
  26. Salonga, J., Gauvreau, P. (2014), "Comparative study of the proportions, form, and efficiency of concrete arch bridges", J. Bridge Eng., 19(3), https://doi.org/10.1061/(ASCE)BE.1943-5592.0000537.
  27. Sarmiento, M., Ruiz-Teran, A. and Aparicio, A. (2013), "State-of-the-art of spatial arch bridges", Proceedings of the ICE - Bridge Eng., 166(3), 163-176. https://doi.org/10.1680/bren.11.00010.
  28. Schanack, F. (2008), Puentes en arco tipo Network, Ph.D. Dissertaion, Technical University of Cantabria, Santander, Spain. [In Spanish]
  29. Stavidris, L. (2010), Structural Systems: Behaviour and Design, Thomas Telford, London.
  30. Tveit, P. (2020), About the Network arch bridge, Available online, https://home.uia.no/pert/index.php/My_Publications
  31. Tzonis, A. (2007), Santiago Calatrava: Complete Works, Rizzoli, New York, EEUU.