DOI QR코드

DOI QR Code

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai (School of Civil Engineering, Chang'an University) ;
  • Huilin Wei (School of Civil Engineering, Chang'an University) ;
  • Bin Wang (School of Civil Engineering, Chang'an University) ;
  • Fangfang Liao (School of Civil Engineering, Chang'an University) ;
  • Tianhua Zhou (School of Civil Engineering, Chang'an University) ;
  • Xingwen Liang (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2022.09.01
  • Accepted : 2023.03.28
  • Published : 2023.04.10

Abstract

This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No.51208058), and the Natural Science Foundation Research Project of Shaanxi Province of China (No. 2022JM-242).

References

  1. Bai, L., Zhang, C. and Xiong, E. (2019), "Investigations on the shear mechanism of steel tube rein forced concrete shear walls with a low shear span ratio", KSCE J. Civ. Eng., 23(7), 2983-2996. https://doi.org/10.1007/s12205-019-1170-3.
  2. Curkovic, I., Skejic, D., Dzeba, I. and De Matteis, G. (2019), "Seismic performance of composite plate shear walls with variable column flexural stiffness", Steel Comp. Struct., 33(1), 851-868. https://doi.org/10.12989/ scs.2019.33.1.019.
  3. Wan-Lin, C., Min, W. and Shao-He, W. (2008), "A seismic research of composite shear wall and core walls with rectangular concrete filled steel tube columns", Eng. Struct., 25, 58-70.
  4. Cao, W., Wang, M. and Wang, S. (2008), "Seismic behavior research on composite shear wall with concrete filled steel tube columns in high axial-load ratio", Earthq Eng Eng Vib., 28(1), 85-90. https://doi.org/ 10.13197/j.eeev.2008.02.015.
  5. Cao, W., Wang, M., Zhang J., Wang, S. and Zeng, B. (2008), "Seismic experiment and load-carrying capacity calculation of shear wall with concrete filled steel tube columns", J B Univ Technol., 34(12), 1291-1297. (in Chinese)
  6. Dang, L., Pang, R., Liu, Y., Wang, Y., Wang, L. and Yang J. (2022), "Research on seismic performance of precast steel-concrete composite tube shear walls with horizontal joint", Eng. Struct., 250, https://doi.org/10.1016/ j. engstruct.2021.113409.
  7. Fang, X., Li, Q., Wei, H., Zhou, Y., Jiang, Y. and Lai, H. (2013), "Experimental study on axial-flexural behavior of shear walls with steel tube-confined high performance concrete", J. Build. Eng., 34(8), 72-81. https://doi.org/10.14006/j.jzjgxb.2018.11.010.(in Chinese)
  8. GB 50010 (2010), Code for Design of Concrete Structures, China Ministry of Construction: Beijing; China.
  9. Gao, D., You, P., Zhang, L. and Yan H. (2018), "Seismic behavior of SFRC shear wall with CFST columns", Steel Comp. Struct., 28(5), 527-539. https://doi.org/10.12989/scs.2018.28.5.527.
  10. Huang, F., Yu, X. and Chen, B. (2012), "The structural performance of axially loaded CFST columns under various loading conditions", Steel Comp. Struct., 13(5), 451-471. https://doi.org/10.12989 /scs. 2012.13.5.451. https://doi.org/10.12989/scs.2012.13.5.451
  11. Hou, H., Fu, W., Qiu, C., Cheng, J., Qu, Z., Zhu, W. and Ma, T. (2019), "Effect of axial compression ratio on concrete-filled steel tube composite shear wall", Adv. Struct., 22(3), 656-669. https://doi.org /10.1177/1369433218796407.
  12. Han, L H., Tao, Z. and Yao, G.H. (2008), "Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression", Thin Wall. Struct., 46(7), 765-780. https://doi.org/10.1016/j.tws.2008.01.026.
  13. Han, L. (2016), "Concrete filled steel tubular structures theory and practice", Beijing: Science Press, China.
  14. Ji, X., Sun, Y., Qian, J. and Lu, X. (2015), "Seismic behavior and modeling of steel reinforced concrete (SRC) walls", Earthq. Eng. Struct. D., 44, 955-72. https://doi.org/10.1002/eqe.2614.
  15. Li, X., Zhang, J. and Cao, W. (2020), "Hysteretic behavior of high-strength concrete shear walls with high-strength steel bars: Experimental study and modelling", Eng. Struct., 214, https://doi.org/10.1016/j.engstruct.2020.110600.
  16. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Comp. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
  17. Liao, F.Y., Han, L.H. and Tao, Z. (2009), "Seismic behaviour of circular CFST columns and RC shear wall mixed structures: experiment", J. Constr. Steel Res., 65(8-9), 1582-96. https://doi.org/10.1016/j.jcsr.2009.04.023.
  18. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center.
  19. Paulay, T. and Priestley, M.J.N. (1992), "Seismic design of reinforced concrete and masonry buildings", Wiley Interdiscip. Rev. Water., 30(04), https://doi.org/10.1002/ 9780470172841.
  20. Park, H. and Eom, T. (2007), "Truss model for nonlinear analysis of RC members subject to cyclic loading", J. Struct. Eng. 133(10), 1351-63. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1351).
  21. Park, R. (1988), "State of the art report ductility evaluation from laboratory and analytical testing", Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Kyoto, Japan, 605-616.
  22. Qian, J., Wei, Y., Zhang, Z., Cai, Y., Yu, Y. and Shen, L. (2008), "Experimental study on seismic behavior of SRC shear walls with high axial force ratio", J. Build. Eng., 29(4), 43-50. https://doi.org/10.14006/ j.jzjgxb.2008.02.008.
  23. Qian, J., Jiang, Z. and Ji, X. (2012), "Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading", Eng. Struct., 36, 173-84. https://doi.org/10.1016/j.engstruct.2011.10.026.
  24. Qin, Y., Chen, X., Xi, W., Zhu, X. and Chen, Y. (2020), "Behavior of L-shaped double-skin composite walls under compression and biaxial bending", Steel Comp. Struct., 37(4), 405-418. https://doi.org/10.12989/scs.2020.37.4.405.
  25. Teng, S. and Chandra, J. (2016), "Cyclic shear behavior of high-strength concrete structural walls", ACI Struct. J., 113(6), 1335- 1345. https://doi.org/10.14359 /51689158. https://doi.org/10.14359/51689158
  26. Tong, X., Hajjar, J.F., Schultz, A.E. and Shield, C.K. (2005), "Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially restrained connections", J. Constr. Steel Res., 61, 531-52. https://doi.org/10.1016/j.jcsr.2004.10.002.
  27. Taucer, F., Spacone, E. and Filippou, F.C. (1991), A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures, Report UCB/EERC-91/17, Earthquake Engineering Research Center, University of California at Berkeley.
  28. Xu, G., Wang, Z., Wu, B., Bursi, O.S., Tan, X., Yang, Q. and Wen, L. (2017), "Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies", Eng. Struct., 150, 346-58. https://doi.org/10.1016/j.engstruct.2017.06.026.
  29. Guang, Y., Zhao, Zuozhou, Q.J. and Xu, L. (2014), "Experimental study on seismic behavior of a new type of concrete filled steel tube composite shear walls", Bldg., 44(7), 93-98. https://doi.org/10.19701/j.jzjg.2014.07.018.(in Chinese)
  30. Younas, S., Li, D., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustained loading", Steel Comp. Struct., 39(2), 159-170. https://doi.org/10.12989/scs.2021.39.2.159.
  31. Zhou, J., Fang, X. and Yao, Z. (2018), "Mechanical behavior of a steel tube-confined high-strength concrete shear wall under combined tensile and shear loading", Eng. Struct., 171, 673-85. https://doi.org/10.1016 /j.engstruct.2018.06.024. https://doi.org/10.1016/j.engstruct.2018.06.024
  32. Zhao, N., Wang, Y., Han, Q. and Su, H. (2020), "Bearing capacity of composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall", Adv. Struct., 23(10), 2188-2203. https:// doi.org/10.1177/1369433220911156.
  33. Zhang, J., Li, X., Yu, C. and Cao, W. (2021), "Cyclic behavior of high-strength concrete shear walls with high-strength reinforcements and boundary CFST columns", J. Constr. Steel Res., 182(4), https://doi.org /10.1016/j.jcsr.2021.106692.