DOI QR코드

DOI QR Code

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Received : 2022.01.15
  • Accepted : 2023.02.22
  • Published : 2023.03.25

Abstract

Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

Keywords

Acknowledgement

The authors gratefully acknowledge the support from the Civil & Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Saudi Arabia.

References

  1. Ahmad, S. and Hakeem, I. (2015), "Effect of curing, fibre content and exposures on compressive strength and elasticity of UHPC", Adv. Cement Res., 27(4), 233-239. https://doi.org/10.1680/adcr.13.00090
  2. ASTM C150-19 (2019), Standard specification for Portland cement (pp. 1-10). West Conshohocken, PA, USA: ASTM International.
  3. ASTM C33-18 (2019), Standard specifications for coarse aggregates (pp. 1-8). West Conshohocken, PA, USA: ASTM International.
  4. ASTM C39-18 (2018), Standard test method for compressive strength of cylindrical concrete specimens (pp. 1-8). West Conshohocken, PA, USA: ASTM International.
  5. ASTM C469-14 (2014), Standard test method for static modulus of elasticity and poisson's ratio of concrete (pp. 1-5). West Conshohocken, PA, USA: ASTM International.
  6. ASTM C494-19 (2019), Standard Specification for Chemical Admixtures for Concrete (pp. 1-15). West Conshohocken, PA, USA: ASTM International.
  7. ASTM C78-18 (2018), Standard test method for flexural strength of concrete (using simple beam with third-point loading) (pp. 1- 5). West Conshohocken, PA, USA: ASTM International.
  8. Azad, A.K., Hakeem, I. and Ahmad, S. (2012), "Effect of cyclic exposure and fibre content on tensile properties of ultra-high-performance concrete", Adv. Cement Res., 1-8. https://doi.org/10.1680/adcr.12.00039
  9. Batarlar, B. (2013), Behavior of reinforced concrete slabs subjected to impact loads, Izmir Institute of Technology.
  10. Birtel, V. and Mark, P. (2006), "Numerical analyses of the biaxial shear capacity of transverse reinforced concrete members", Proceedings of the 8th International Conference on Computational Structures Technology, Stirling, UK.
  11. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., Int. J., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195
  12. Dassault Systemes Simulia (2016), ABAQUS 6.14. Simula, User's manual.
  13. Elavenil, S. and Knight, G.M.S. (2012), "Impact response of plates under drop weight impact testing", Daffodil Int. Univ. Sci. Technol., 7(1), 1-11. https://doi.org/10.3329/diujst.v7i1.9580
  14. Farnam, Y., Mohammadi, S. and Shekarchi, M. (2010), "Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite", Int. J. Impact Eng., 37(2), 220-229. https://doi.org/10.1016/j.ijimpeng.2009.08.006
  15. Filho, R.D.T., Koenders, E.A.B., Formagini, S. and Fairbairn, E.M.R. (2012), "Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability", Mater. Des., 36, 880-888. https://doi.org/10.1016/j.matdes.2011.09.022
  16. Hakeem, I. (2011), Characterization of ultra-high performance concrete, King Fahd University of Petroleum and Minerals.
  17. Hakeem, I., Azad, A.K. and Ahmad, S. (2013), "Effect of steel fibers and thermal cycles on fracture properties of ultra-high-performance concrete", J. Test. Eval., 41(3), 458-464. https://doi.org/10.1520/JTE20120182
  18. Huang, H., Gao, X. and Khayat, K.H. (2021), "Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading", Cement Concrete Compos., 121, p. 104108. https://doi.org/10.1016/j.cemconcomp.2021.104108
  19. Iqbal, M.A., Kumar, V. and Mittal, A.K. (2019), "Experimental and numerical studies on the drop impact resistance of prestressed concrete plates", Int. J. Impact Eng., 123, 98-117. https://doi.org/10.1016/j.ijimpeng.2018.09.013
  20. Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., Int. J., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431
  21. Kiran, T., Zai, S.A.K. and Srikant Reddy, S. (2015), "Impact test on geopolymer concrete slabs", Int. J. Res. Eng. Technol., 4(12), 110-116.
  22. Kota, S.K., Rama, J.S. and Murthy, A.R. (2019), "Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model", Earthq. Struct., Int. J., 17(2), 221-232. https://doi.org/10.12989/eas.2019.17.2.221
  23. Krishna, B.M., Reddy, V.G.P., Tadepalli, T., Kumar, P.R. and Lahir, Y. (2019), "Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach", Comput. Concrete, Int. J., 24(6), 561-570. https://doi.org/10.12989/cac.2019.24.6.561
  24. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  25. Li, J., Wu, C. and Hao, H. (2015a), "Residual loading capacity of ultra-high performance concrete columns after blast loads", Int. J. Protect. Struct., 6(4), 649-669. https://doi.org/10.1260/2041-4196.6.4.649
  26. Li, J., Wu, C. and Hao, H. (2015b), "An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads", Mater. Des., 82, 64-76. https://doi.org/10.1016/j.matdes.2015.05.045
  27. Li, J., Wu, C., Hao, H., Wang, Z. and Su, Y. (2016), "Experimental investigation of ultra-high performance concrete slabs under contact explosions", Int. J. Impact Eng., 93, 62-75. https://doi.org/10.1016/j.ijimpeng.2016.02.007
  28. Lubliner, J. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  29. Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", Int. J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003
  30. Nuclear Energy Institute (2011), Methodolgy for performing aircraft impact assessments for new plant designs, NEI 07-13, Revision 8P.
  31. Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013
  32. Raza, A. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, Int. J., 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383
  33. Riedel, W., Noldgen, M., Strabburger, E., Thoma, K. and Fehling, E. (2010), "Local damage to UHPC structures caused by an impact of aircraft engine missiles", Nuclear Eng. Des., 240, 2633-2642. https://doi.org/10.1016/j.nucengdes.2010.07.036
  34. Su, Y., Li, J., Wu, C., Wu, P. and Li, Z. (2016), "Effects of steel fibres on dynamic strength of UHPC", Constr. Bulid. Mater., 114, 708-718. https://doi.org/10.1016/j.conbuildmat.2016.04.007
  35. Tang, C.W. (2021), "Mix design and early-age mechanical properties of ultra-high performance concrete", Adv. Concrete Constr., Int. J., 11(4), 335-345. https://doi.org/10.12989/acc.2021.11.4.335
  36. Thai, D. and Kim, S. (2016), "Prediction of UHPFRC panels thickness subjected to aircraft engine impact", Case Stud. Struct. Eng., 5, 38-53. https://doi.org/10.1016/j.csse.2016.03.003
  37. Wahalathantri, B.L., Thambiratnam, D.P., Chan, T.H.T. and Fawzia, S. (2011), "A material model for flexural crack simulation in reinforced concrete elements using ABAQUS", In: The 1st International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing pp. 260-264. Retrieved from: https://www.researchgate.net/deref/http://eprints.qut.edu.au/41712/
  38. Willey, J.A. (2013), Use of ultra-high performance concrete to mitigate impact and explosive threats, Missouri University.
  39. Yanni, V.Y.G. (2009), Multi-Scale Investigation of Tensile Creep of UHPC for Bridge Application, Georgia Institute of Technology.