Acknowledgement
The authors gratefully acknowledge the support from the Civil & Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Saudi Arabia.
References
- Ahmad, S. and Hakeem, I. (2015), "Effect of curing, fibre content and exposures on compressive strength and elasticity of UHPC", Adv. Cement Res., 27(4), 233-239. https://doi.org/10.1680/adcr.13.00090
- ASTM C150-19 (2019), Standard specification for Portland cement (pp. 1-10). West Conshohocken, PA, USA: ASTM International.
- ASTM C33-18 (2019), Standard specifications for coarse aggregates (pp. 1-8). West Conshohocken, PA, USA: ASTM International.
- ASTM C39-18 (2018), Standard test method for compressive strength of cylindrical concrete specimens (pp. 1-8). West Conshohocken, PA, USA: ASTM International.
- ASTM C469-14 (2014), Standard test method for static modulus of elasticity and poisson's ratio of concrete (pp. 1-5). West Conshohocken, PA, USA: ASTM International.
- ASTM C494-19 (2019), Standard Specification for Chemical Admixtures for Concrete (pp. 1-15). West Conshohocken, PA, USA: ASTM International.
- ASTM C78-18 (2018), Standard test method for flexural strength of concrete (using simple beam with third-point loading) (pp. 1- 5). West Conshohocken, PA, USA: ASTM International.
- Azad, A.K., Hakeem, I. and Ahmad, S. (2012), "Effect of cyclic exposure and fibre content on tensile properties of ultra-high-performance concrete", Adv. Cement Res., 1-8. https://doi.org/10.1680/adcr.12.00039
- Batarlar, B. (2013), Behavior of reinforced concrete slabs subjected to impact loads, Izmir Institute of Technology.
- Birtel, V. and Mark, P. (2006), "Numerical analyses of the biaxial shear capacity of transverse reinforced concrete members", Proceedings of the 8th International Conference on Computational Structures Technology, Stirling, UK.
- Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., Int. J., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195
- Dassault Systemes Simulia (2016), ABAQUS 6.14. Simula, User's manual.
- Elavenil, S. and Knight, G.M.S. (2012), "Impact response of plates under drop weight impact testing", Daffodil Int. Univ. Sci. Technol., 7(1), 1-11. https://doi.org/10.3329/diujst.v7i1.9580
- Farnam, Y., Mohammadi, S. and Shekarchi, M. (2010), "Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite", Int. J. Impact Eng., 37(2), 220-229. https://doi.org/10.1016/j.ijimpeng.2009.08.006
- Filho, R.D.T., Koenders, E.A.B., Formagini, S. and Fairbairn, E.M.R. (2012), "Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability", Mater. Des., 36, 880-888. https://doi.org/10.1016/j.matdes.2011.09.022
- Hakeem, I. (2011), Characterization of ultra-high performance concrete, King Fahd University of Petroleum and Minerals.
- Hakeem, I., Azad, A.K. and Ahmad, S. (2013), "Effect of steel fibers and thermal cycles on fracture properties of ultra-high-performance concrete", J. Test. Eval., 41(3), 458-464. https://doi.org/10.1520/JTE20120182
- Huang, H., Gao, X. and Khayat, K.H. (2021), "Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading", Cement Concrete Compos., 121, p. 104108. https://doi.org/10.1016/j.cemconcomp.2021.104108
- Iqbal, M.A., Kumar, V. and Mittal, A.K. (2019), "Experimental and numerical studies on the drop impact resistance of prestressed concrete plates", Int. J. Impact Eng., 123, 98-117. https://doi.org/10.1016/j.ijimpeng.2018.09.013
- Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., Int. J., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431
- Kiran, T., Zai, S.A.K. and Srikant Reddy, S. (2015), "Impact test on geopolymer concrete slabs", Int. J. Res. Eng. Technol., 4(12), 110-116.
- Kota, S.K., Rama, J.S. and Murthy, A.R. (2019), "Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model", Earthq. Struct., Int. J., 17(2), 221-232. https://doi.org/10.12989/eas.2019.17.2.221
- Krishna, B.M., Reddy, V.G.P., Tadepalli, T., Kumar, P.R. and Lahir, Y. (2019), "Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach", Comput. Concrete, Int. J., 24(6), 561-570. https://doi.org/10.12989/cac.2019.24.6.561
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Li, J., Wu, C. and Hao, H. (2015a), "Residual loading capacity of ultra-high performance concrete columns after blast loads", Int. J. Protect. Struct., 6(4), 649-669. https://doi.org/10.1260/2041-4196.6.4.649
- Li, J., Wu, C. and Hao, H. (2015b), "An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads", Mater. Des., 82, 64-76. https://doi.org/10.1016/j.matdes.2015.05.045
- Li, J., Wu, C., Hao, H., Wang, Z. and Su, Y. (2016), "Experimental investigation of ultra-high performance concrete slabs under contact explosions", Int. J. Impact Eng., 93, 62-75. https://doi.org/10.1016/j.ijimpeng.2016.02.007
- Lubliner, J. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", Int. J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003
- Nuclear Energy Institute (2011), Methodolgy for performing aircraft impact assessments for new plant designs, NEI 07-13, Revision 8P.
- Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013
- Raza, A. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, Int. J., 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383
- Riedel, W., Noldgen, M., Strabburger, E., Thoma, K. and Fehling, E. (2010), "Local damage to UHPC structures caused by an impact of aircraft engine missiles", Nuclear Eng. Des., 240, 2633-2642. https://doi.org/10.1016/j.nucengdes.2010.07.036
- Su, Y., Li, J., Wu, C., Wu, P. and Li, Z. (2016), "Effects of steel fibres on dynamic strength of UHPC", Constr. Bulid. Mater., 114, 708-718. https://doi.org/10.1016/j.conbuildmat.2016.04.007
- Tang, C.W. (2021), "Mix design and early-age mechanical properties of ultra-high performance concrete", Adv. Concrete Constr., Int. J., 11(4), 335-345. https://doi.org/10.12989/acc.2021.11.4.335
- Thai, D. and Kim, S. (2016), "Prediction of UHPFRC panels thickness subjected to aircraft engine impact", Case Stud. Struct. Eng., 5, 38-53. https://doi.org/10.1016/j.csse.2016.03.003
- Wahalathantri, B.L., Thambiratnam, D.P., Chan, T.H.T. and Fawzia, S. (2011), "A material model for flexural crack simulation in reinforced concrete elements using ABAQUS", In: The 1st International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing pp. 260-264. Retrieved from: https://www.researchgate.net/deref/http://eprints.qut.edu.au/41712/
- Willey, J.A. (2013), Use of ultra-high performance concrete to mitigate impact and explosive threats, Missouri University.
- Yanni, V.Y.G. (2009), Multi-Scale Investigation of Tensile Creep of UHPC for Bridge Application, Georgia Institute of Technology.