DOI QR코드

DOI QR Code

CO2 Separation Performance of PEBAX Mixed Matrix Membrane Using PEI-GO@ZIF-8 as Filler

충진물로 PEI-GO@ZIF-8를 사용한 PEBAX 혼합막의 CO2 분리 성능

  • Eun Sun Yi (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Se Ryeong Hong (Kyedang College of General Educations, Sangmyung University) ;
  • Hyun Kyung Lee (Department of Chemical Engineering and Materials Science, Sangmyung University)
  • 이은선 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원) ;
  • 이현경 (상명대학교 화공신소재학과)
  • Received : 2022.12.19
  • Accepted : 2023.01.12
  • Published : 2023.02.28

Abstract

In this study, a mixed matrix membrane was prepared by varying the contents of PEI-GO@ZIF-8 synthesized in PEBAX 2533, and the permeation characteristics of N2 and CO2 were studied. The N2 permeability of the PEBAX/PEIGO@ZIF-8 mixed matrix membrane decreased as the PEI-GO@ZIF-8 content increased, and the CO2 permeability showed different trends depending on the PEI-GO@ZIF-8 content. The CO2 permeability increased in pure PEBAX membrane up to PEBAX/PEI-GO@ZIF-8 0.1 wt%, but decreased at the subsequent content. The PEI-GO@ZIF-8 0.1 wt% mixed matrix membrane had a CO2 permeability of 221.9 Barrer and a CO2/N2 selectivity of 60.0, showing the highest permeation properties with improved CO2 permeability and CO2/N2 selectivity among the prepared mixed matrix membrane and we obtained a result that reached the Robeson upper-bound. This is due to the -COOH, -O-, and -OH functional groups of GO and the amine group bonded to PEI, which interact friendly with CO2, and the effect of ZIF-8, which causes gate-opening for CO2 while the fillers are evenly dispersed in PEBAX.

본 연구에서는 PEBAX 2533에 합성된 PEI-GO@ZIF-8의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/PEI-GO@ZIF-8 혼합막의 N2 투과도는 PEI-GO@ZIF-8 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO@ZIF-8 함량에 따라 다른 경향을 보였는데 순수 PEBAX 막에서 PEI-GO@ZIF-8 0.1 wt%까지 CO2 투과도는 증가하다가 그 이후의 함량에서는 감소하였다. PEI-GO@ZIF-8 0.1 wt% 혼합막은 CO2 투과도 221.9 Barrer, CO2/N2 선택도는 60.0으로, 제조된 혼합막들 중 CO2 투과도와 CO2/N2 선택도가 향상되어 가장 높은 투과 특성을 보였고 Robeson upper-bound에 도달하는 결과를 얻었다. 이는 충진물이 PEBAX 내에 고루 분산되면서 CO2와 친화적인 상호작용을하는 GO의 -COOH, -O-, -OH 작용기와 PEI에 결합된 아민기 그리고 CO2에 대해 gate-opening 현상이 일어나는 ZIF-8의 영향 때문이다.

Keywords

Acknowledgement

이 논문은 상명대학교 2021년도 교내연구비 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. T. Ghanbari, F. Abnisa, and W. M. A. W. Daud, "A review on production of metal organic frameworks (MOF) for CO2 adsorption", Sci. Total Environ., 707, 135090 (2020).
  2. M. Spek, T. Fout, M. Garcia, V. N. Kuncheekanna, M. Matuszewski, S. McCoy, J. Morgan, S. M. Nazir, A. Ramirez, S. Roussanaly, and E. S. Rubin, "Uncertainty analysis in the techno-economic assessment of CO2 capture and storage technologies. Critical review and guidelines for use", Int. J. Greenh. Gas Control, 100, 103113 (2020).
  3. N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, and C. Klaysom, "Recent membrane developments for CO2 separation and capture", Chem. Eng. Technol, 41, 211 (2018).
  4. A. W. Thornton, D. Dubbeldam, M. S. Liu, B. P. Ladewig, A. J. Hill, and M. R. Hill, "Feasibility of zeolitic imidazolate framework membranes for clean energy applications" Energy Environ. Sci., 5, 7637 (2012).
  5. Z. X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, "Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers", Chem. Rev., 118, 5871 (2018).
  6. M. M. H. S. Buddin and A. L. Ahmad, "A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation" J. CO2 Util., 51, 101616 (2021).
  7. H. H. Tseng, I. A. Kumar, T. H. Weng, C. Y. Lu, and M. Y. Wey, "Preparation and characterization of carbon molecular sieve membranes for gas separation-the effect of incorporated multi-wall carbon nanotubes", Desalination, 240, 40 (2009).
  8. A. Ehsani and M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/ Pebax2533 mixed matrix membrans", J. Taiwan Inst. Chem. Eng., 66, 414 (2016).
  9. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014).
  10. M. D. Pravin and A. Gnanamani, "Preparation, characterization and reusability efficacy of amine functionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase", RSC Adv., 8, 38416 (2018).
  11. N. Nidamanuri, Y. Li, Q. Li, and M. Dong, "Graphene and graphene oxide-based membranes for gas separation", Eng. Sci., 9, 3 (2020).
  12. R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, "Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture", Membranes, 10, 188 (2020).
  13. S. Castarlenas, C. Tellez, and J. Coronas, "Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids", J. Membr. Sci, 526, 205 (2017).
  14. A. Huang and B. Feng, "Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO2 capture", Int. J. Hydrogen Energy, 43, 2224 (2018).
  15. H. Tai, Y. Zhen, C. Liu, Z. Ye, G. Xie, X. Du, and Y. Jiang, "Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film", Sensors Actuators B: Chem., 230, 501 (2016).
  16. X. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine- modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture", Energy Fuels, 16, 1463 (2002).
  17. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, and H. Wu, "Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes", ACS Appl. Mater. Interfaces, 7, 5528 (2015).
  18. X. Gong, Y. Wang, and T. Kuang, "ZIF-8-Based membranes for carbon dioxide capture and separation", ACS Sustainable Chem. Eng., 5, 11204 (2017).
  19. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "Zeolite A imidazolate frameworks", Nat. Mater., 6, 501 (2007).
  20. V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014).
  21. B. Chen, C. Wan, X. Kang, M. Chen, C. Zhang, Y. Bai, and L. Dong, "Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO", Sep. Purif. Technol., 223, 113 (2019).
  22. L. Dong, M. Chen, J. L. D. Shi, W. Dong, X. Li, and Y. Bai, "Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes", J. Membr. Sci., 520, 801 (2016).
  23. E. S. Yi and S. R. Hong, "Gas permeation characteristics of PEBAX mixed membranes contaning polyethylenimine-modified GO", Membr. J., 31, 404 (2021).
  24. Y. Zhang, Y. Jia, and L. Hou, "Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM2.5 removal", RSC Adv., 8, 31417 (2018).
  25. Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, and L. Zhao, "One-step fabrication of PEI-modified GO particles for CO2 capture", Appl. Phys. A, 125, 160 (2019).
  26. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, and T. Matsuura, "Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concetrations of triethylamine", RSC Adv., 4, 33292 (2014).
  27. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock-amide) for gas separation applications", J. Membr. Sci., 510, 270-283 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  28. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, "CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions", Microporous Mesoporous Mater., 267, 53 (2018).
  29. R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, and G. He, "Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation", Sep. Purif. Technol., 236, 116209 (2020).
  30. S. Wang, J. Cui, S. Zhang, X. Xie, and W. Xia, "Enhancement thermal stability and CO2 adsorption property of ZIF-8 by pre-modification with polyaniline", Mater. Res. Express, 7, 025304 (2020).
  31. L. Xu, L. Xiang, C. Wang, J. Yu, L. Zhang, and Y. Pan, "Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals", Chin. J. Chem. Eng., 25, 882 (2017).
  32. A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane", J. Nat. Gas Sci. Eng., 31, 562 (2016).
  33. M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010).
  34. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphen oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
  35. T. Hou, L. Shu, K. Guo, X. Zhang, S. Zhou, M. He, and J. Yao, "Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation", Cellulose, 27, 3277 (2020).
  36. G. J. Shin, K. Y. Rhee, and S. J. Park, "Improvement of CO2 capture by graphite oxide in presence of polyethylenimine", Int. J. Hydrogen Energy, 41, 14351 (2016).
  37. C. Jiao, Z. Li, X. Li, M. Wu, and H. Jiang, "Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8", Sep. Purif. Technol., 259, 118190 (2021).
  38. D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, "Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation", RSC Adv., 8, 6099 (2018).
  39. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).