DOI QR코드

DOI QR Code

Finite element based total response analysis of rectangular liquid containers against different excitations

  • 투고 : 2021.12.02
  • 심사 : 2023.03.17
  • 발행 : 2023.03.25

초록

In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

키워드

참고문헌

  1. Adhikary, R. and Mandal, K.K. (2018), "Dynamic analysis of water storage tank with rigid block at bottom", Ocean Syst. Eng., 8(1), 57-77. https:// doi.org/10.12989/ose.2018.8.1.057.
  2. Ali, A.Q. and Telang, D.P. (2017), "A survey on dynamic analysis of elevated water tank for different staging configuration", J. Computer Sci. Mobile Com., 6(5), 194-201.
  3. Algreane, G.A.I., Osman, S.A., Karim, O.A. and Kasa, A. (2011), "Study the fluid structure interaction due to dynamic response of elevated concrete water tank", Aust. J. Basic Appl. Sci., 5(9), 1084-1087.
  4. Arafa, M. (2007), "Finite element analysis of sloshing in rectangular liquid-filled tanks", J. Vib. Control, 13(7), 883-903. https://doi.org/10.1177/1077546307078833.
  5. Aregawi, B. and Kassahun, A. (2017), "Dynamic Response of ground supported rectangular water tanks to earthquake excitation", Momona Ethiopian J. Sci., 9(1), 66-75. https://doi.org/10.4314/mejs.v9i1.5.
  6. Avval, I.T. (2012), "Dynamic response of concrete rectangular liquid tanks in three-dimensional space", Theses and dissertations. http://digitalcommons.ryerson.ca/dissertations.
  7. Bhojavia, R. and Dhyani, D.J. (2018), "Comparative seismic analysis of ground supported circular water tank using codal provision", Proceedings of the 2 nd Inter. Conf. of Current Research Trends in Engg. and Technology, 4(5), 2394-4099.
  8. Bouaanani, N., Goulmot, D. and Miquel, B. (2012), "Seismic response of asymmetric rectangular liquidcontaining structures", J. Eng. Mech., 138(10), 1288-1297. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000423.
  9. Chen, J.Z. and Kianoush, M.R. (2004), "Response of concrete liquid containing structures in different seismic zones", Proceedings of the 13th World Conf. on Earthquake Eng., Paper No. 1441.
  10. Chu , R.C., Wu, R.Y., Wu, R.T. and Wang, C.Y. (2018), "Slosh-induced hydrodynamic force in a water tank with multiple baffles", Ocean Eng., 167, 282-292. https://doi.org/10.1016/j.oceaneng.2018.08.049.
  11. Dudhatra, K. and Desani, V, (2016), "Parametric study of hydrodynamic pressure for ground rested rectangular RC tank", Int. J. Sci. Develop. Res., 1(5), 259-264.
  12. Gill, S. (1951), "A process for the step-by-step integration of differential equations in an automatic digital computing machine", Proceedings of the Cambridge Philosophical Society, 47, 96-108. https://doi.org/10.1017/S0305004100026414
  13. Hejazi, F.S.A. and Mohammadi , M.K. (2019), "Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations", J. Soil Dynam. Earthq. Eng., 116, 637-653. https://doi.org/10.1016/j.soildyn.2018.10.015.
  14. Hemalatha, P. and Rao. K.V.M. (2018), "Analytical interpretation of hydrodynamic pressure causing slosh effect on overhead water tank", Int. J. Recent Res. Aspects, 5(1), 328-332.
  15. Jena, D. and Biswal, K.C. (2017), "A numerical study of violent sloshing problems with modified MPS method", J. Hydrodynam., 29(4), 659-667. https://doi.org/10.1016/S1001-6058(16)60779-5.
  16. Kang, H.S., Arif, U.G., Kim, K.S., Kim, H.M., Liu, Y.J., Lee, K.Q. and Wu, Y.T. (2019), "Sloshing suppression by floating baffle", Ocean Syst. Eng., 9(4),409-422. https://doi.org/10.12989/ose.2019.9.4.409.
  17. Kolai, A. and Rakheja, S. (2018), "Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container", J. Vib. Control, 25(1), 84-97. https://doi.org/10.1177/1077546318771221
  18. Kotrasova, K. (2017), "Influence of horizontal seismic excitation on tank-fluid-soil interaction", Civil Eng. Series, 17(1), 45-56. https://doi.org/10.1515/tvsb-2017-0010
  19. Kotrasova, K. and Kormanikova, E. (2018), "Frequency analysis of partially-filled rectangular water tank", Int. J. Mech., 12, 59-66.
  20. Mandal, K.K. and Maity, D. (2016), "Nonlinear finite element analysis of water in rectangular tank", Ocean Eng., 121, 592-601. https://doi.org/10.1016/j.oceaneng.2016.05.048.
  21. Ming, P.J. and Duan, W.Y. (2010), "The numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids", J. Hydrodynam., 22(6), 856-864. https://doi.org/10.1016/S1001-6058(09)60126-8.
  22. Mingzhen, W. and Lin, G. (2018), "Dynamic time-history analyses of ground reinforced concrete tank in water supply system under bi-directional horizontal seismic actions", Adv. Eng. Res., 163, 123-135.
  23. Nguyen, H.X., Dinh, V.N. and Basu, B. (2021), "A comparison of smoothed particle hydrodynamics simulation with exact results from a nonlinear water wave model", Ocean Syst. Eng., 11(2),185-201. https://doi.org/10.12989/ose.2021.11.2.185.
  24. Pajand. M.R. (2016), "Analytical solution for free vibration of flexible 2D rectangular tanks", Ocean Eng., 122, 118-135. https://doi.org/10.1016/j.oceaneng.2016.05.052.
  25. Patel, C.H., Vaghela, S.N. and Patel, H.S. (2012), "Sloshing response of elevated water tank over alternate column proportionality", Int. J. Adv. Eng. Technol., 3(4), 60-63.
  26. Ralston, A. and Wilf, H.S. (1965), Mathematical Models for Digital Computers, Wiley, New York.
  27. Rawat, A., Mittal,V., Chakraborty, T. and Matsagar, V. (2019), "Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and EulerLagrange methods", Thin-Wall. Struct., 134, 333-346. https://doi.org/10.1016/j.tws.2018.10.016.
  28. Saghi, H. (2016), "The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon", Int. J. Naval Architect. Ocean Eng., 8(2), 153-168. https://doi.org/10.1016/j.ijnaoe.2015.12.001.
  29. Sahaj, K.V., Nasar, T. and Vijay, K.G. (2021), "Experimental study on liquid sloshing with dual vertical porous baffles in a sway excited tank", Ocean Syst. Eng., 11(4), 535-371. https://doi.org/10.12989/ose.2021.11.4.353.
  30. Sanapala, V.S., Sajisha, S.D., Velusamya, K., Ravisankara. A. and Patnaikb , B.S.V. (2019), "An experimental investigation on the dynamics of liquid sloshing in a rectangular tank and its interaction with an internal vertical pole", J. Sound Vib., 449, 43-63. https://doi.org/10.1016/j.jsv.2019.02.025.
  31. Shekari, M.R., Hekmatzadeh, A.A. and Amiri. S.M. (2019), "On the nonlinear dynamic analysis of baseisolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle", Thin-Wall. Struct., 138, 79-94. https://doi.org/10.1016/j.tws.2019.01.037.
  32. Virella, J.C., Prato, C.A. and Godoy, L.A. (2008), "Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions", J. Sound Vib., 312(3), 442-460. https://doi.org/10.1016/j.jsv.2007.07.088.
  33. Wakchaure, M.R. and Besekar, S.S. (2014), "Behaviour of elevated water tank under sloshing effect", Int. J. Eng. Res. Technol., 3(2), 2278-0181.
  34. Yazdanian , M., Razavi, S.V. and Mashal, M. (2016), "Seismic analysis of rectangular concrete tanks by considering fluid and tank interaction", J. Solid Mech., 8(2), 435-445.
  35. Yazdabad, M., Behnamfar, F. and Samani, A.K. (2018), "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending", Earthq. Struct., 14(2), 95-102. https://doi.org/10.12989/eas.2018.14.2.095.
  36. Zhao, M. and Zhou, J. (2018), "Review of seismic studies of liquid storage tanks", Struct. Eng. Mech., 65(5), 557-572. https://doi.org/10.12989/sem.2018.65.5.557.
  37. Zhaoac , D., Hub. Z., Chenad . G., Limb. S. and Wange, S. (2018), "Nonlinear sloshing in rectangular tanks under forced excitation", Int. J. Naval Architect. Ocean Eng., 10(5), 545-565. https://doi.org/10.1016/j.ijnaoe.2017.10.005.
  38. Zhong, L. (2018), "Seismic design and analysis of concrete liquid-containing tanks", Structures Congress 2018, 444-454.