참고문헌
- Adhikary, R. and Mandal, K.K. (2018), "Dynamic analysis of water storage tank with rigid block at bottom", Ocean Syst. Eng., 8(1), 57-77. https:// doi.org/10.12989/ose.2018.8.1.057.
- Ali, A.Q. and Telang, D.P. (2017), "A survey on dynamic analysis of elevated water tank for different staging configuration", J. Computer Sci. Mobile Com., 6(5), 194-201.
- Algreane, G.A.I., Osman, S.A., Karim, O.A. and Kasa, A. (2011), "Study the fluid structure interaction due to dynamic response of elevated concrete water tank", Aust. J. Basic Appl. Sci., 5(9), 1084-1087.
- Arafa, M. (2007), "Finite element analysis of sloshing in rectangular liquid-filled tanks", J. Vib. Control, 13(7), 883-903. https://doi.org/10.1177/1077546307078833.
- Aregawi, B. and Kassahun, A. (2017), "Dynamic Response of ground supported rectangular water tanks to earthquake excitation", Momona Ethiopian J. Sci., 9(1), 66-75. https://doi.org/10.4314/mejs.v9i1.5.
- Avval, I.T. (2012), "Dynamic response of concrete rectangular liquid tanks in three-dimensional space", Theses and dissertations. http://digitalcommons.ryerson.ca/dissertations.
- Bhojavia, R. and Dhyani, D.J. (2018), "Comparative seismic analysis of ground supported circular water tank using codal provision", Proceedings of the 2 nd Inter. Conf. of Current Research Trends in Engg. and Technology, 4(5), 2394-4099.
- Bouaanani, N., Goulmot, D. and Miquel, B. (2012), "Seismic response of asymmetric rectangular liquidcontaining structures", J. Eng. Mech., 138(10), 1288-1297. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000423.
- Chen, J.Z. and Kianoush, M.R. (2004), "Response of concrete liquid containing structures in different seismic zones", Proceedings of the 13th World Conf. on Earthquake Eng., Paper No. 1441.
- Chu , R.C., Wu, R.Y., Wu, R.T. and Wang, C.Y. (2018), "Slosh-induced hydrodynamic force in a water tank with multiple baffles", Ocean Eng., 167, 282-292. https://doi.org/10.1016/j.oceaneng.2018.08.049.
- Dudhatra, K. and Desani, V, (2016), "Parametric study of hydrodynamic pressure for ground rested rectangular RC tank", Int. J. Sci. Develop. Res., 1(5), 259-264.
- Gill, S. (1951), "A process for the step-by-step integration of differential equations in an automatic digital computing machine", Proceedings of the Cambridge Philosophical Society, 47, 96-108. https://doi.org/10.1017/S0305004100026414
- Hejazi, F.S.A. and Mohammadi , M.K. (2019), "Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations", J. Soil Dynam. Earthq. Eng., 116, 637-653. https://doi.org/10.1016/j.soildyn.2018.10.015.
- Hemalatha, P. and Rao. K.V.M. (2018), "Analytical interpretation of hydrodynamic pressure causing slosh effect on overhead water tank", Int. J. Recent Res. Aspects, 5(1), 328-332.
- Jena, D. and Biswal, K.C. (2017), "A numerical study of violent sloshing problems with modified MPS method", J. Hydrodynam., 29(4), 659-667. https://doi.org/10.1016/S1001-6058(16)60779-5.
- Kang, H.S., Arif, U.G., Kim, K.S., Kim, H.M., Liu, Y.J., Lee, K.Q. and Wu, Y.T. (2019), "Sloshing suppression by floating baffle", Ocean Syst. Eng., 9(4),409-422. https://doi.org/10.12989/ose.2019.9.4.409.
- Kolai, A. and Rakheja, S. (2018), "Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container", J. Vib. Control, 25(1), 84-97. https://doi.org/10.1177/1077546318771221
- Kotrasova, K. (2017), "Influence of horizontal seismic excitation on tank-fluid-soil interaction", Civil Eng. Series, 17(1), 45-56. https://doi.org/10.1515/tvsb-2017-0010
- Kotrasova, K. and Kormanikova, E. (2018), "Frequency analysis of partially-filled rectangular water tank", Int. J. Mech., 12, 59-66.
- Mandal, K.K. and Maity, D. (2016), "Nonlinear finite element analysis of water in rectangular tank", Ocean Eng., 121, 592-601. https://doi.org/10.1016/j.oceaneng.2016.05.048.
- Ming, P.J. and Duan, W.Y. (2010), "The numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids", J. Hydrodynam., 22(6), 856-864. https://doi.org/10.1016/S1001-6058(09)60126-8.
- Mingzhen, W. and Lin, G. (2018), "Dynamic time-history analyses of ground reinforced concrete tank in water supply system under bi-directional horizontal seismic actions", Adv. Eng. Res., 163, 123-135.
- Nguyen, H.X., Dinh, V.N. and Basu, B. (2021), "A comparison of smoothed particle hydrodynamics simulation with exact results from a nonlinear water wave model", Ocean Syst. Eng., 11(2),185-201. https://doi.org/10.12989/ose.2021.11.2.185.
- Pajand. M.R. (2016), "Analytical solution for free vibration of flexible 2D rectangular tanks", Ocean Eng., 122, 118-135. https://doi.org/10.1016/j.oceaneng.2016.05.052.
- Patel, C.H., Vaghela, S.N. and Patel, H.S. (2012), "Sloshing response of elevated water tank over alternate column proportionality", Int. J. Adv. Eng. Technol., 3(4), 60-63.
- Ralston, A. and Wilf, H.S. (1965), Mathematical Models for Digital Computers, Wiley, New York.
- Rawat, A., Mittal,V., Chakraborty, T. and Matsagar, V. (2019), "Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and EulerLagrange methods", Thin-Wall. Struct., 134, 333-346. https://doi.org/10.1016/j.tws.2018.10.016.
- Saghi, H. (2016), "The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon", Int. J. Naval Architect. Ocean Eng., 8(2), 153-168. https://doi.org/10.1016/j.ijnaoe.2015.12.001.
- Sahaj, K.V., Nasar, T. and Vijay, K.G. (2021), "Experimental study on liquid sloshing with dual vertical porous baffles in a sway excited tank", Ocean Syst. Eng., 11(4), 535-371. https://doi.org/10.12989/ose.2021.11.4.353.
- Sanapala, V.S., Sajisha, S.D., Velusamya, K., Ravisankara. A. and Patnaikb , B.S.V. (2019), "An experimental investigation on the dynamics of liquid sloshing in a rectangular tank and its interaction with an internal vertical pole", J. Sound Vib., 449, 43-63. https://doi.org/10.1016/j.jsv.2019.02.025.
- Shekari, M.R., Hekmatzadeh, A.A. and Amiri. S.M. (2019), "On the nonlinear dynamic analysis of baseisolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle", Thin-Wall. Struct., 138, 79-94. https://doi.org/10.1016/j.tws.2019.01.037.
- Virella, J.C., Prato, C.A. and Godoy, L.A. (2008), "Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions", J. Sound Vib., 312(3), 442-460. https://doi.org/10.1016/j.jsv.2007.07.088.
- Wakchaure, M.R. and Besekar, S.S. (2014), "Behaviour of elevated water tank under sloshing effect", Int. J. Eng. Res. Technol., 3(2), 2278-0181.
- Yazdanian , M., Razavi, S.V. and Mashal, M. (2016), "Seismic analysis of rectangular concrete tanks by considering fluid and tank interaction", J. Solid Mech., 8(2), 435-445.
- Yazdabad, M., Behnamfar, F. and Samani, A.K. (2018), "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending", Earthq. Struct., 14(2), 95-102. https://doi.org/10.12989/eas.2018.14.2.095.
- Zhao, M. and Zhou, J. (2018), "Review of seismic studies of liquid storage tanks", Struct. Eng. Mech., 65(5), 557-572. https://doi.org/10.12989/sem.2018.65.5.557.
- Zhaoac , D., Hub. Z., Chenad . G., Limb. S. and Wange, S. (2018), "Nonlinear sloshing in rectangular tanks under forced excitation", Int. J. Naval Architect. Ocean Eng., 10(5), 545-565. https://doi.org/10.1016/j.ijnaoe.2017.10.005.
- Zhong, L. (2018), "Seismic design and analysis of concrete liquid-containing tanks", Structures Congress 2018, 444-454.