DOI QR코드

DOI QR Code

Criteria for Algebraic Operators to be Unitary

  • Zenon Jan Jablonski (Instytut Matematyki, Uniwersytet Jagiellonski) ;
  • Jan Stochel (Instytut Matematyki, Uniwersytet Jagiellonski) ;
  • Il Bong Jung (Department of Mathematics, Kyungpook National University)
  • 투고 : 2022.07.05
  • 심사 : 2022.09.19
  • 발행 : 2023.03.31

초록

Criteria for an algebraic operator T on a complex Hilbert space 𝓗 to be unitary are established. The main one is written in terms of the convergence of sequences of the form {||Tnh||}n=0 with h ∈ 𝓗. Related questions are also discussed.

키워드

과제정보

The research of the first and second authors was supported by the National Science Center (NCN) Grant OPUS No. DEC-2021/43/B/ST1/01651. The research of the third author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R111A1A01043569).

참고문헌

  1. J. Agler, Hypercontractions and subnormality, J. Operator Theory, 13(1985), 203-217. 
  2. J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces, I, Integral Equations Operator Theory, 21(1995), 383-429.  https://doi.org/10.1007/BF01222016
  3. J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces, II, Integral Equations Operator Theory, 23(1995), 1-48.  https://doi.org/10.1007/BF01261201
  4. J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces, III, Integral Equations Operator Theory, 24(1996), 379-421.  https://doi.org/10.1007/BF01191619
  5. A. Athavale, On completely hyperexpansive operators, Proc. Amer. Math. Soc., 124(1996), 3745-3752.  https://doi.org/10.1090/S0002-9939-96-03609-X
  6. D. Cicho'n, I. B. Jung and J. Stochel, Normality via local spectral radii, J. Operator Theory, 61(2009), 253-278. 
  7. J. B. Conway, A course in functional analysis, Graduate Texts in Mathematics 96, Springer-Verlag, New York(1990). 
  8. J. B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, 36, American Mathematical Society, Providence(1991).
  9. J. Danes, On local spectral radius, Casopis Pest. Mat., 112(1987), 177-187.  https://doi.org/10.21136/CPM.1987.118306
  10. R. L. Devaney, An introduction to chaotic dynamical systems, Reprint of the second (1989) edition, Westview Press, Boulder(2003). 
  11. Z. Jablonski, I. B. Jung and J. Stochel, On the structure of conditionally positive definite algebraic operators, Complex Anal. Oper. Theory, 16(6)(2022), Paper No. 90, 21 pp. 
  12. I. Jung and J. Stochel, Subnormal operators whose adjoints have rich point spectrum, J. Funct. Anal., 255(2008), 1797-1816.  https://doi.org/10.1016/j.jfa.2008.07.013
  13. Z. J. Jablonski, I. B. Jung and J. Stochel, m-Isometric operators and their local properties, Linear Algebra Appl., 596(2020), 49-70.  https://doi.org/10.1016/j.laa.2020.02.035
  14. Z. J. Jab lo'nski, I. B. Jung and J. Stochel, Conditional positive definiteness in operator theory, Dissertationes Math., 578(2022), 64 pp. 
  15. C. S. Kubrusly, An introduction to models and decompositions in operator theory, Birkhauser Boston, Boston(1997). 
  16. C. S. Kubrusly, The elements of operator theory, Birkhauser/Springer, New York(2011). 
  17. A. Lambert, Subnormality and weighted shifts, J. London Math. Soc., 14(1976), 476-480.  https://doi.org/10.1112/jlms/s2-14.3.476
  18. M. Reed and B. Simon, Methods of modern mathematical physics, vol. I: Functional analysis, Academic Press(1980). 
  19. B. Russo, Unimodular contractions in Hilbert space, Pacific J. Math., 26(1968), 163-169.  https://doi.org/10.2140/pjm.1968.26.163
  20. V. M. Sholapurkar and A. Athavale, Completely and alternatingly hyperexpansive operators, J. Operator Theory, 43(2000), 43-68. 
  21. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117(1965), 469-476.  https://doi.org/10.1090/S0002-9947-1965-0173161-3