DOI QR코드

DOI QR Code

CONTROLLABILITY OF IMPULSIVE NEUTRAL STOCHASTIC FUNCTIONAL INTEGRODIFFERENTIAL SYSTEM VIA RESOLVENT OPERATOR

  • K. RAMKUMAR (Department of Mathematics, PSG College of Arts and Science) ;
  • K. RAVIKUMAR (Department of Mathematics, PSG College of Arts and Science) ;
  • DIMPLEKUMAR CHALISHAJAR (Department of Applied Mathematics, Mallory Hall, Virginia Military Institute) ;
  • A. ANGURAJ (Department of Mathematics, PSG College of Arts and Science) ;
  • MAMADOU ABDOUL DIOP (Departement de Mathematiques, Universite Geston Berger de Sanit-Louis)
  • Received : 2021.07.29
  • Accepted : 2023.02.15
  • Published : 2023.03.30

Abstract

This paper is concerned by the controllability results of impulsive neutral stochastic functional integrodifferential equations (INSFIDEs) driven by fractional Brownian motion with infinite delay in a real separable Hilbert space. The controllability results are obtained using stochastic analysis, Krasnoselkii fixed point method and the theory of resolvent operator in the sense of Grimmer. A practical example is provided to illustrate the viability of the abstract result of this work.

Keywords

References

  1. A. Anguraj and K. Ramkumar, Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions, fractal Fract 2(4) (2018), 29.
  2. G. Arthi, Ju H. Park and H.Y. Jung, Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion, Communication in nonlinear Science and Numerical similation 32 (2016), 145-157. https://doi.org/10.1016/j.cnsns.2015.08.014
  3. K. Balachandran, J.H. Kim and S. Karthikeyan, Controllability of semilinear stochastic integrodifferential equations, Kybernetika 43 (2007), 31-44.
  4. B. Boufoussi, S. Hajji and E. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afrika Matematika 23(2) (2012), 173-194. https://doi.org/10.1007/s13370-011-0028-8
  5. B. Boufoussi and S. Hajji, Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett. 82 (2012), 1549-1558. https://doi.org/10.1016/j.spl.2012.04.013
  6. M. Chen, Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion, Stoch. Dyn. 15 (2015), 1-16. https://doi.org/10.1142/S0219493715500057
  7. M.A. Diop, R. Sakthivel and A.A. Ndiaye, Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time varying delays, Mediterr. J. Math. 13(5) (2016), 2425-2442. https://doi.org/10.1007/s00009-015-0632-1
  8. R.C. Grimmer, Resolvent operators for integral equations in a Banach space, Transactions of the American Mathematical Society 273 (1982), 333-349. https://doi.org/10.1090/S0002-9947-1982-0664046-4
  9. J. Klamka, Stochastic controllability of linear systems with delay in control, Bull. Pol. Acad. Sci. Tech. Sci. 55 (2007), 23-29.
  10. J. Klamka, Controllability of dynamical systems, A survey. Bull. Pol. Acad. Sci. Tech. Sci. 61 (2013), 221-229. https://doi.org/10.2478/bpasts-2013-0031
  11. J. Liang, J.H. Liu and T.J. Xiao, Nonlocal problems for integrodifferential equations, Dynamics of Continuous, Discrete and Impulsive Systems 15 (2008), 815-824.
  12. E. Lakhel, Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion, Stoch. Anal. Appl. 34(3) (2016), 427-440. https://doi.org/10.1080/07362994.2016.1149718
  13. E. Lakhel and S. Hajji, Existence and uniqueness of mild solutions to neutral stochastic functonal differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients, J. Numerical Mathematics and Stochastics 7(1) (2015), 14-29.
  14. Y. Li and B. Liu, Existence of solution of nonlinear neutral functional differential inclusion with infinite delay, Stoc. Anal. Appl. 25 (2007), 397-415. https://doi.org/10.1080/07362990601139610
  15. J.R. Leon, C. Lundena, Estimating the diffusion coefficient for diffusions driven by fBm, Stat. Inference Stoch. Process 3(1-2) (2000), 183-192. https://doi.org/10.1023/A:1009981317912
  16. B. Mandelbrot, V. Ness, Fractional Brownian motion, fractional noise and applocations, SIAM Rev. 10(4) (1986), 422-437. https://doi.org/10.1137/1010093
  17. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
  18. J.Y. Park, K. Balachandran and G. Arthi, Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Analysis: Hybrid Systems 3 (2009), 184-194. https://doi.org/10.1016/j.nahs.2008.12.002
  19. Y. Ren, X. Cheng and R. Sakthivel, On time dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay, Mathematical Methods in the Applied Sciences 37 (2013), 2177-2184.
  20. R. Sakthivel, R. Ganesh, Y. Ren and S.M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. https://doi.org/10.1016/j.cnsns.2013.05.015
  21. R. Sakthivel and J.W. Luo, Asymptotic stability of impulsive stochastic partial differential equations, Statist. Probab. Lett. 79 (2009), 1219-1223. https://doi.org/10.1016/j.spl.2009.01.011
  22. C.A. Tudor, Analysis of the Rosenblatt process, ESAIM: Probability and Statistics 12 (2008), 230-257. https://doi.org/10.1051/ps:2007037