References
- A. Anguraj and K. Ramkumar, Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions, fractal Fract 2(4) (2018), 29.
- G. Arthi, Ju H. Park and H.Y. Jung, Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion, Communication in nonlinear Science and Numerical similation 32 (2016), 145-157. https://doi.org/10.1016/j.cnsns.2015.08.014
- K. Balachandran, J.H. Kim and S. Karthikeyan, Controllability of semilinear stochastic integrodifferential equations, Kybernetika 43 (2007), 31-44.
- B. Boufoussi, S. Hajji and E. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afrika Matematika 23(2) (2012), 173-194. https://doi.org/10.1007/s13370-011-0028-8
- B. Boufoussi and S. Hajji, Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett. 82 (2012), 1549-1558. https://doi.org/10.1016/j.spl.2012.04.013
- M. Chen, Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion, Stoch. Dyn. 15 (2015), 1-16. https://doi.org/10.1142/S0219493715500057
- M.A. Diop, R. Sakthivel and A.A. Ndiaye, Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time varying delays, Mediterr. J. Math. 13(5) (2016), 2425-2442. https://doi.org/10.1007/s00009-015-0632-1
- R.C. Grimmer, Resolvent operators for integral equations in a Banach space, Transactions of the American Mathematical Society 273 (1982), 333-349. https://doi.org/10.1090/S0002-9947-1982-0664046-4
- J. Klamka, Stochastic controllability of linear systems with delay in control, Bull. Pol. Acad. Sci. Tech. Sci. 55 (2007), 23-29.
- J. Klamka, Controllability of dynamical systems, A survey. Bull. Pol. Acad. Sci. Tech. Sci. 61 (2013), 221-229. https://doi.org/10.2478/bpasts-2013-0031
- J. Liang, J.H. Liu and T.J. Xiao, Nonlocal problems for integrodifferential equations, Dynamics of Continuous, Discrete and Impulsive Systems 15 (2008), 815-824.
- E. Lakhel, Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion, Stoch. Anal. Appl. 34(3) (2016), 427-440. https://doi.org/10.1080/07362994.2016.1149718
- E. Lakhel and S. Hajji, Existence and uniqueness of mild solutions to neutral stochastic functonal differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients, J. Numerical Mathematics and Stochastics 7(1) (2015), 14-29.
- Y. Li and B. Liu, Existence of solution of nonlinear neutral functional differential inclusion with infinite delay, Stoc. Anal. Appl. 25 (2007), 397-415. https://doi.org/10.1080/07362990601139610
- J.R. Leon, C. Lundena, Estimating the diffusion coefficient for diffusions driven by fBm, Stat. Inference Stoch. Process 3(1-2) (2000), 183-192. https://doi.org/10.1023/A:1009981317912
- B. Mandelbrot, V. Ness, Fractional Brownian motion, fractional noise and applocations, SIAM Rev. 10(4) (1986), 422-437. https://doi.org/10.1137/1010093
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
- J.Y. Park, K. Balachandran and G. Arthi, Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Analysis: Hybrid Systems 3 (2009), 184-194. https://doi.org/10.1016/j.nahs.2008.12.002
- Y. Ren, X. Cheng and R. Sakthivel, On time dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay, Mathematical Methods in the Applied Sciences 37 (2013), 2177-2184.
- R. Sakthivel, R. Ganesh, Y. Ren and S.M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. https://doi.org/10.1016/j.cnsns.2013.05.015
- R. Sakthivel and J.W. Luo, Asymptotic stability of impulsive stochastic partial differential equations, Statist. Probab. Lett. 79 (2009), 1219-1223. https://doi.org/10.1016/j.spl.2009.01.011
- C.A. Tudor, Analysis of the Rosenblatt process, ESAIM: Probability and Statistics 12 (2008), 230-257. https://doi.org/10.1051/ps:2007037