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Abstract. This paper is concerned by the controllability results of impul-

sive neutral stochastic functional integrodifferential equations (INSFIDEs)

driven by fractional Brownian motion with infinite delay in a real separa-
ble Hilbert space. The controllability results are obtained using stochastic

analysis, Krasnoselkii fixed point method and the theory of resolvent oper-

ator in the sense of Grimmer. A practical example is provided to illustrate
the viability of the abstract result of this work.
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1. Introduction

Over the past few decades, controllability is one of the fundamental concept
in mathematical control theory and plays an important role in both determin-
istic and stochastic control theories. Controllability generally means that it is
possible to steer a dynamical control system from an arbitrary initial state to an
arbitrary final state using the set of admissible controls. If a system cannot be
controlled completely then different types of controllability can be defined such
as approximate, null, local null and local approximate null controllability. For
more details the reader may refer to [9, 10, 19, 1, 20] and references therein.

Fractional Brownian motion (fBm)
{
BH : t ∈ R

}
is a Gaussian stochastic pro-

cess, which depends on a parameter H ∈ (0, 1) called the Hurst index. This
stochastic process has self-similarity, stationary increments, and long-range de-
pendence properties. It is known that fBm is generalization of Brownian motion
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and it reduces to a standard Brownian motion when H = 1
2 . FBm have at-

tracted significant interest [9, 12, 13] and for potential applications in finance
market, telecommunications networks, biology and other fields see [22, 15]. For
additional details on fBm, we fefer the monographs [16] and the articles therein
[1, 19, 6].

The asymptotic behaviours along with the existence and uniqueness for class
of INSFIDEs driven by fBm with delays and infinite delays are established in
[2, 7] with the mild solutions. Moreover, several upcoming researchers are keen
interest to study the solvation of control problems in the field of stochastic sys-
tems. A through survey of literature revals that a very little work has been done
for the fBm in stochastic control problems. Chen [6] concerned the approximate
controllability for semilinear stochastic equations with fBm. Several researchers
reported the use of fBm in stochastic integrodifferential equations (see refer to
[12, 13, 19] and references therein). Moreover, the controllability of INSFIDEs
systems with infinite delay driven by fBm is an untreated topic in the literature
so far. Thus, we will make the first attempt to study such problem in this paper.

The goal of present research work is focus to study the controllability of
INSFIDEs of the form:

d [x(t)− Γ(t, xt)] = A [x(t)− Γ(t, xt) +Bu(t)] dt

+

∫ t

0

O(t− s) [x(s)− Γ(s, xs)] dsdt + Λ(t, xt)dt

+ Ξ(t)dBH(t), t ∈ [0,T], (1)

∆x
∣∣
t−tk

= x(t+k )− x(t−k ) = Ik(x(t
−
k )), k = 1, ...,m, (2)

x(t) = φ(t) ∈ L0
2(Ω,BH), for a.e. t ∈ (−∞, 0]. (3)

Where, A is the infinitesimal generator of a strongly continuous bounded linear
operator (T(t))t≥0 on a Hilbert space X with domainD(A); O(t) is a closed linear
operator on X with domain D(O) ⊃ D(A); BH is a fBm with Hurst parameter
H > 1

2 on a real and separable Hilbert space Y; and u(·) denots the control

function takes values L2([0,T],U), the Hilbert space of admissionble control
functions for a separable Hilbert space U; and B is a bounded linear operator
from U into X. The history xt : (−∞, 0] → X, xt(θ) = x(t + θ), belongs to
an abstract phase space BH defined axiomatically, and Γ,Λ : [0,T]× BH → X,
Ξ : [0,T] → L0

2(Y,X), are appropriate functions, where L0
2(Y,X) denotes the

space of all Q-Hilbert-Schmit operators from Y into X. Moreover, the fixed
moments of time tk satisfy 0 < t1 < t2 < ... < tm < T, x(t−k ) and x(t+k )
represent the left and right limits of x(t) at time tk respectively. ∆x(tk) denotes
the jump in the state x at time tk with I : X → X determining the size of the
jump.



Controllability of impulsive neutral stochastic functional integrodifferential system 25

2. Preliminaries

Fix a time interval [0,T] and let (Ω,ℑ,P) be a complete probability space and{
βH(t) : t ∈ [0,T]

}
be a one-dimensional fBm with Hurst parameter H ∈ ( 12 , 1).

By definition, βH is a centered Gaussian process with covariance function

RH(t,s) = E
[
βH(t)βH(s)

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Moreover, βH has the following Wiener integral representation

βH(t) =

∫ t

0

KH(t, s)dβ(s),

where β = {β(t); t ∈ [0,T]} is a Wiener process and kernel KH(t, s) is given by

KH(t, s) = cHS
1
2=H

∫ t

0

(u− s)H− 3
2uH− 1

2 du,

for t > s, where cH =
√

H(2H−1)

g(2−2H,H− 1
2 )

and g(·, ·) denotes the Beta function.

We take KH(t, s) = 0 if t ≤ s. We will denote by H the repreducing kernal
Hilbert space of the fBm. Precisely, H is the closure of set of indicator functions{
1[0,t] : t ∈ [0,T]

}
with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

= RH(t, s).

The mapping 1[0,t] → βH(t) can be extended to an isometry between H and the

first Wiener chaos and we will denote by βH(φ) the image of φ by the previous
isometry.

Let X and Y be two real separable Hilbert spaces and let L(Y,X) be the space
of bounded linear operator from Y to X. Let Q ∈ L(X,Y) be an operator defined
by Qen = λnen with fiinite trace

trQ =

∞∑
n=1

λn < ∞,

where λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n = 1, 2, ...)
is a complete orthonormal basis in Y. We define the infinte dimensional fBm on
Y with covariance Q as

BH(t) = BHQ(t) =

∞∑
n=1

√
λnenβ

H
n (t).

where βH
n are real, independent fBm’s. This process is Gaussian, it starts from

0, has zero mean and covariance

E
〈
BH(t), x

〉 〈
BH(s), y

〉
= R(s, t) ⟨Q(x), y⟩ for x, y ∈ Y and t, s ∈ [0,T].

Now, define the Weiner integrals with respect to the Q-fBm, we introduce the
space L0

2 = L0
2(Y,X) of all Q-Hilbert-Schmidt operators ζ : Y → X. We recall

that ζ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

∥ζ∥2L0
2

=

∞∑
n=1

∥∥∥√λnζen

∥∥∥2 < ∞,
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and that the space L0
2 equipped with the inner product < φ, ζ >L0

2
=

∑∞
n=1 <

φen, ζen > is a separable Hilbert space. Let ϕ(s) : s ∈ [0,T] be a function with
values in L0

2(Y,X) such that
∞∑

n=1

∥∥∥K∗ϕQ1/2en

∥∥∥2
L0

2

< ∞.

The Weiner integral of ϕ with respect to BH is defined by∫ t

0

ϕ(s)dBH =

∞∑
n=1

∫ t

0

√
λnϕ(s)endβ

H
n (s). (4)

Lemma 2.1. If ζ : [0,T] → L0
2(Y,X) satisfies

∫ t

0

∥ζ(s)∥2L0
2
ds < ∞, then (4) is

well defined as an X-valued random variable and

E

∥∥∥∥∫ t

0

ζ(s)dBH(s)

∥∥∥∥2 ≤ 2Ht2H−1

∫ t

0

∥ζ∥2L0
2
ds.

Let the phase space BH is a linear space of functions from (−∞, 0] into X,
endowed with a norm ∥·∥BH

. First, we present the abstract phase space BH.

Suppose that the continuous function H : (−∞, 0] → [0,∞) endowed with

l =

∫ 0

−∞
H(s)ds < ∞.

Define the abstract phase space BH by BH =
{
ζ : (−∞, 0] → X for any τ > 0,

(E ∥ζ∥2)1/2 is bounded and measurable function

[τ, 0]
∫ 0

−∞ H(t) sup
t≤τ≤0

(E ∥ζ(s)∥2)1/2dt < ∞
}
. Let us define the norm

∥ζ∥BH
=

∫ 0

−∞
H(t) sup

t≤s≤0
(E ∥ζ∥2)1/2dt,

then it is clear that (BH, ∥·∥BH
) is a Banach space.

Consider the space BDI [D and I stand for delay and impulse, respectively]

given by BDI =
{
x : (−∞,T] → X : x|Ik ∈ C(Ik,X) and x(t+k ), x(t

−
k ) exist with

x(t+k )−x(t−k ), k = 1, 2, ...,m x0−φ ∈ BH and sup0≤t≤T E(∥x(t)∥2) < ∞
}
, where

x|Ik is the restiction of x to the interval Ik = (tk, tk+1], k = 1, 2, ...,m. Then the
function ∥·∥BH

to be a semi-norm in BDI, it is defined by

∥x∥BDI
= ∥x0∥BH

+ sup
0<t<T

(E(∥x(t)∥2))1/2.

Lemma 2.2. [14] Suppose x ∈ BDI, then for all t ∈ [0,T], xt ∈ BH and

l(E(∥x(t)∥2)) 1
2 ≤ l sup

0≤s≤t
(E ∥x(s)∥2) 1

2 + ∥x0∥BH
,

where l =
∫ 0

−∞ H(s)ds < ∞.



Controllability of impulsive neutral stochastic functional integrodifferential system 27

2.1. Partial integrodifferential equations in Banach spaces. Further, we
recollect some basic results related to resolvent operators. Regarding the theory
of resolvent operators, we refer the reader to [8]. Let A and O(t) are closed
linear operator on X and Y represents the Banach space D(A) equipped with
the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.
The notation C([0,∞);Y) stands for the space of all continuous functions from
[0,∞) into Y. We consider the following Cauchy problem x′(t) = Ax(t) +

∫ t

0

O(t− s)x(s)ds for t ≥ 0,

x(0) = x0 ∈ X.
(5)

Definition 2.3. [8] A resolvent operator for Equation (5) is a bounded linear
operator valued function R(t) ∈ L(X) for t ≥ 0, satisfying the following proper-
ties:
(i) R(0) = I and ∥R(t)∥ ≤ Meλt for some constants M and λ.
(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
(iii) For x ∈ Y, R(·)x ∈ C1([0,∞);X)

⋂
C([0,∞);Y) and

R
′
(t)x = AR(t)x+

∫ t

0

O(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)O(s)xds for t ≥ 0. (6)

For additional details on resolvent operators, we refer the reader to [8]. In what
follows we suppose the following assumptions:
(H1) The operator A generator a C0-semigroup (T(t))t≥0 on X.
(H2) For all t ≥ 0, O(t) is a continuous linear operator from (Y, |·|Y) into
(X, |·|X). Moreover, there exists an integrable function C : [0,∞) → R+ such
that for any y ∈ Y, y → Θ(t)y belongs to W1,1([0,∞);X) and∣∣∣∣ ddtO(t)(t)y

∣∣∣∣
X

≤ C(t) |y|Y for y ∈ Y and t ≥ 0.

Theorem 2.4. Assume that hypotheses (H1) and (H2) hold. Then there exists
a unique resolvent operator for the Cauchy problem (5).

Lemma 2.5. [11] There exists a constant L = L(T) such that

||R(t + ϵ)−R(ϵ)R(t)||L(X) ≤ Lϵ for 0 ≤ ϵ ≤ t ≤ T.

In the sequel, we recall some results on existence of solutions for the following
integrodifferential equationx′(t) = Ax(t) +

∫ t

0

O(t− s)x(s)ds+ q(t) for t ≥ 0,

x(0) = x0 ∈ X;
(7)



28 K. Ramkumar et al.

where q : [0,∞) → X is a continuous function.

Definition 2.6. A continuous function x : [0,∞) → X is said to be a strict
solution of equation (7) if
(i) x ∈ C1([0,∞);X)

⋂
C([0,∞);Y),

(ii) x satisfies equation (7) for t ≥ 0.

Theorem 2.7. Assume that (H1)-(H2) hold. If x is a strict solution of Equa-
tion (7), then the following variation of constants formula holds

x(t) = R(t)x0 +

∫ t

0

R(t− s)q(s)ds for t ≥ 0. (8)

Now, we have the following definition for mild solution of (7):

Definition 2.8. An X-valued process {x(t) : t ∈ (−∞,T]} is called a mild solu-
tion of (1)-(3),
1. x(t) is measurable for each t > 0, x(t) = φ(t) on (∞, 0],

∆x
∣∣
t−tk

= Ik(x(t
−
k )), k = 1, 2, ...m;

the restriction of x(·) to [0,T]− {t1, t2, ...tm} is continuous.
2. For every 0 ≤ s ≤ t, the process x satisfies the following integral equation:

x(t) = R(t) [φ(0)− Γ(0, φ)] + Γ(t, xt) +

∫ t

0

R(t− s)Λ(s, xs)ds

+

∫ t

0

R(t− s)Bu(s)ds+

∫ t

0

R(t− s)Ξ(s)dBH(s)

+
∑

0<tk<t

R(t− s)Ik(x(t
−
k )), P− a.s. (9)

Definition 2.9. A function x : [0,∞) → X is called a mild solution of (7) if x
satisfies the variation of constants formula (8) for x0 ∈ X.

Definition 2.10. A bounded closed and convex subset V of a Banach space X
and let Π1,Π2 be two operators of V into X satisfying
(i) Π1(x) + Π2(x) ∈ V whenever x ∈ V,
(ii) Π1 is a contraction mapping, and
(iii) Π2 is completely continuous.
Then, ∃ az ∈ V such that z = Π1(z) + Π2(z).

3. Controllability Result

Definition 3.1. System (1)-(3) is said to be controllable on the interval (−∞,T]
if for every initial stochastic process φ defined on (−∞,T], there exists a stochas-
tic control u ∈ L2([0,T];U) such that the mild solution x(·) of (1)-(3) satisfies
x(T) = x1.
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In order to establish the controllability of (1)-(3), we impose the following hy-
potheses:
(H3) The resolvent operatorR(.) is compact and there exist constants M ≥ 1

such that ∥R(t)∥2 ≤ M .
(H4) The mapping Γ : [0,T] × BH → X satisfies the following conditions and
there exist constants kΓ > 0 such that

E ∥Γ(t, x)− Γ(t, y)∥2 ≤ kΓ ∥x− y∥2BH
, t ∈ [0,T], x, y ∈ BH,

k̄Γ = sup
t∈[0,T]

∥Γ(t, 0)∥2 .

(H5) (i) Let t → Γ(t, x) be non-linear continuous measurable function for each
x ∈ BH, which is for a.e t ∈ [0,T],
(ii) ∃ pk ∈ L1([0,T],R+), s.t

∥Γ(t, x)∥2 ≤ pk(t), ∀ t ∈ [0,T], k > 0,

and

lim
k→∞

1

k

∫ T

0

pk(τ)dτ = γ < ∞.

(H6) The impulses functions Ik for k = 1, 2, ...,m, satisfies, ∃ + constants Mk,

M̃k s.t

∥Ik(x)− Ik(y)∥2 ≤ Mk ∥x− y∥2 and ∥Ik(x)∥2 ≤ M̃k for all x, y ∈ BH.

(H7) The function Ξ : [0,∞) → L0
2(Y,X) satisfies∫ T

0

∥Ξ(s)∥2L0
2
ds < ∞, for t > 0.

(H8) The linear operator W from U into X defined by

Wu =

∫ T

0

R(T− s)Bu(s)ds

has an inverse operator W−1 that takes values in L2([0,T],U)/ kerW, where
kerW =

{
x ∈ L2([0,T],U) : Wx = 0

}
The main result of this paper is given in

the next theorem.

Theorem 3.2. Suppose that (H1)-(H8) hold. Then, the system (1)-(3) is
controllable on (−∞,T] provide that

6l2
(
1 + 7MMbMWT2

) [
8[k2(1 + 2k1)] + 8MT2[k3(1 + 2k4)]

]
< 1. (10)

Proof. Using (H8) for an arbitrary function x(·), define the control

ux(t) = W−1

[
x1 −R(T) [φ(0)− Γ(0, x0)]− Γ(T, xT)−

∫ T

0

R(T− s)Λ(s, xs)ds
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−
∫ T

0

R(T− s)Ξ(s)dBH(s)−
∑

0<tk<t

R(T− tk)Ik(x(t
−
k ))

]
(t).

Now, we consider the stochastic control system (8) with u(·) and let nonlinear
operator Ψ on BDI is obtained has follows:

Ψ(x)(t) =



φ(t), for t ∈ (−∞, 0],

R(t) [φ(0)− Γ(0, φ, 0)] + Γ(t, xt) +

∫ t

0

R(t− s)Bux(s)ds

+

∫ t

0

R(t− s)Λ(s, xs)ds+

∫ t

0

R(t− s)Ξ(s)dBH(s)

+
∑

0<tk<t R(t− tk)Ik(x(t
−
k )), if t ∈ [0,T].

Now it is obvious that the mild solution of the system (1)-(3) is similer to
obtained a fixed point to operator Ψ .

Let y : (−∞,T] → X be the function is,

y(t) =

{
φ(t), if t ∈ (−∞, 0],

R(t)φ(0), if t ∈ [0,T].

if, y0 = φ. For each function z ∈ BDI, set

x(t) = z(t) + y(t).

It is obviously that x satisfies the stoachastic control system (8) iff z satisfies
z0 = 0 and

z(t) = Γ(t, zt + yt)−R(t)Γ(0, φ) +

∫ t

0

R(t− s)Bz+y(s)ds

+

∫ t

0

R(t− s)Λ(s, zs + ys)ds+

∫ t

0

R(t− s)Ξ(s)dBH(s)

+
∑

0<tk<t

R(t− tk)Ik[z(t
−
k )− y(t−k )], if t ∈ [0,T], (11)

where

uz+y(t) = W−1

[
x1 −R(T) [φ(0)− Γ(0, z0 + y0)]− Γ(T, zT + yT)

−
∫ T

0

R(T− s)Λ(s, zs + ys)ds

−
∫ T

0

R(T− s)Ξ(s)dBH(s)−
∑

0<tk<T
R(T− tk)Ik[z(t

−
k ) + y(t−k )]

]
(t).

Set

B0
DI = {z ∈ BDI : z0 = 0} ,
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for any z ∈ B0
DI, we have

∥z∥B0
DI

= ∥z0∥BH
+ sup

t∈[0,T]
(E ∥z(t)∥2) 1

2 = sup
t∈[0,T]

(E ∥z(t)∥2) 1
2 .

Then, (B0
DI, ∥·∥B0

DI
) is a Banach space. Define the operator Θ : B0

DI → B0
DI by

(Θz)(t) =



0 if t ∈ (−∞, 0],

Γ(t, zt + yt)−R(t)Γ(0, φ) +

∫ t

0

R(t− s)Bz+y(s)ds

+

∫ t

0

R(t− s)Λ(s, zs + ys)ds+

∫ t

0

R(t− s)Ξ(s)dBH(s)

+
∑

0<tk<t R(t− tk)Ik[z(t
−
k )− y(t−k )], if t ∈ [0,T],

(12)

Set

Bk =
{
z ∈ B0

DI : ∥z∥
2
B0

DI
≤ k

}
, for some k ≥ 0,

then Bk ⊆ B0
DI is a bounded closed convex set, and for z ∈ Bk, we have

∥zt + yt∥BDI

≤ 2
(
∥zt∥2BDI

+ ∥yt∥2BDI

)
≤ 4

(
l2 sup

0≤s≤t
E ∥z(s)∥2 + ∥z0∥2BH

+ l2 sup
0≤s≤t

E ∥y(s)∥2 + ∥y0∥2BH

)
≤ 4l2

(
k +ME ∥φ(0)∥2

)
+ 4 ∥y∥2BH

:= r∗.

Next,

E
∥∥uz+y

∥∥2 ≤ 7MW

[
∥x1∥2 +ME ∥φ(0)∥2 + 2M [kΓ ∥y∥2BH

+ k̄Γ]

+ MT
∫ t

0

pr∗(s)ds+ 2MT2H−1

∫ T

0

∥Ξ(s)∥2L0
2
ds

+ mM

m∑
k=1

M̃k

]
:= G (13)

It is clearly proved that the operator Θ has a fixed point iff Θ̂, so it turns to
prove that Θ̂ has a fixed point. To this end, we decompose Θ̂ as Θ̂ = Θ1 +Θ2,
where Θ1 and Θ2 are defined on B0

DI, respectively by

(Θ1z)(t) =


0 if t ∈ (−∞, 0],

Γ(t, zt + yt)−R(t)Γ(0, φ)

+

∫ t

0

R(t− s)Ξ(s)dBH(s), if t ∈ [0,T],
(14)
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(Θ2z)(t) =


0 if t ∈ (−∞, 0],∫ t

0

R(t− s)Λ(s, zs + ys)ds+

∫ t

0

R(t− s)Buz+y(s)ds

+
∑

0<tk<t R(t− tk)Ik(z(t
−
k ) + y(t−k )), if t ∈ [0,T],

(15)

By applying Krasnoselskii fixed point theorem for the operator Θ̂, we show the
following conditions:
(1) Θ1(x) + Θ2(x) ∈ Bk whenever x ∈ Bk,
(2) Θ1 is a contraction,
(3) Θ2 is continuous and compact map.
For our convenience, the proof will be splitup into three steps:
Step 1: We have to show that ∃ k > 0, s.t Θ1(x) + Θ2(x) ∈ Bk whenever
x ∈ Bk. If it is not true, then for each k > 0, there is a function zk(·) ∈ Bk, but
Θ1(z

k) + Θ2(z
k) /∈ Bk,

E
∥∥Θ1(z

k)(t) + Θ2(z
k)(t)

∥∥2 > k.

On the other hand,

k < E
∥∥Θ1(z

k)(t) + Θ2(z
k)(t)

∥∥2
≤ 6

[
2M [kΓ ∥y∥2BH

+ k̄Γ] + 2[r∗ + k̄Γ]MMbT2G

+MT
∫ T

0

pr∗(s)ds+ 2MT2H−1

∫ T

0

∥Ξ(s)∥2L0
2
ds+M

m∑
k=1

M̃k

]
≤ 6

(
1 + 6MMbMWT2

) [
2M [kΓ ∥y∥2Bh

+ k̄Γ] + 2[r∗ + k̄Γ]MMbT2G

+MT
∫ T

0

pr∗(s)ds+ 2MT2H−1

∫ T

0

∥Ξ(s)∥2L0
2
ds+M

m∑
k=1

M̃k

]
+ 6MMbMWT2

[
∥x1∥2 +ME ∥φ(0)∥2

]
≤ K̄ + 6

(
1 + 6MMbMWT2

) [
2MT

∫ T

0

pr∗(s)ds

]
where

K̄ = 6
(
1 + 6MMbMWT2

) [
2M [kΓ ∥y∥2BH

+ k̄Γ] + 2k̄Γ

+ 2MT2H−1

∫ T

0

∥Ξ(s)∥2L0
2
ds+M

m∑
k=1

M̃k

+ 6MMbMWT2
[
∥x1∥2 +ME ∥φ(0)∥2

] ]
.
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is independent of k. Dividing both sides by k and taking the lower limit as
k → ∞, we obtain

r∗ = 4l2
[
k +ME ∥φ(0)∥2

]
+ 4 ∥y∥BH

→ ∞ as k → ∞.

lim
k→∞

inf

∫ t

0

pr∗(s)ds

k
= lim

k→∞
inf

∫ t

0

pr∗(s)ds

r∗
.
r∗

k

= 4l2γ.

Thus, we have

6l2
(
1 + 6MMbMWT2

)
[8MTγ] ≥ 1.

This contraction (10). Hence (Θ1 +Θ2) (Bk) ⊆ Bk.
Step 2: Θ1 is a contraction.
Let t ∈ [0,T] and z1, z2 ∈ B0

DI

E
∥∥(Θ1z

1)(t)− (Θ1z
2)(t)

∥∥2 ≤ 2E
∥∥Γ(t, z1t + yt)− Γ(t, z2t + yt)

∥∥2
≤ kΓ

∥∥z1t + yt − z2t + yt
∥∥2

≤ kΓ
∥∥z1t − z2t

∥∥2
≤ kΓ ×

[
2l2 sup

0≤s≤T
E
∥∥z1(s)− z2(s)

∥∥2
+ 2

(∥∥z10∥∥2BH
+

∥∥z20∥∥2BH

)]
≤ ∆× sup

0≤s≤T
E
∥∥z1s − z2s

∥∥2
where ∆ = 2kΓl

2 < 1. Thus Θ1 is a contraction on B0
DI.

Step 3 : Θ2 is completely continuous on B0
DI.

Claim 1. Θ2 is continuous on B0
DI. Let zn be a sequence s.t zn → z in B0

DI.
Then ∃ a number k > 0 s.t ∥zn(t)∥ ≤ k, for all n and a.c. t ∈ [0,T], so zn ∈ Bk

and z ∈ Bk. By hypothesis (H5)-(H6),
(1) Ik, k = 1, 2...m is continuous.
(2) Λ(t, znt + yt) → Λ(t, zt + yt) for each t ∈ [0,T]. Since

∥Λ(t, znt + yt)− Λ(t, zt + yt)∥2 ≤ 2pr∗(t).

(H4) and by using dominated convergence theorem, we get

E ∥Θ2z
n(t)− (Θ2z)(t)∥2

≤ 3E

∥∥∥∥∫ t

0

R(t− s)B
[
uzn+y − uz+y

]
ds

∥∥∥∥2
+ 3E

∥∥∥∥∫ t

0

R(t− s) [Λ(s, zns + ys)− Λ(s, zs + ys)] ds

∥∥∥∥2
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+ 3E

∥∥∥∥∥∥
∑

0≤tk≤t

R(t− tk)
[
Ik(z

n(t−k ) + y(t−k ))− Ik(z(t
−
k ) + y(t−k ))

]∥∥∥∥∥∥
2

≤ 9MwMbMT
∫ T

0

[
E ∥Γ(T, znT + yT)− Γ(T, zT + yT)∥2

+MT
∫ T

0

E ∥Λ(s, zns + ys)− Λ(s, zs + ys)∥2 ds

+Mm

m∑
k=1

E
∥∥Ik(zn(t−k ) + y(t−k ))− Ik(z(t

−
k ) + y(t−k ))

∥∥2 ](λ)dλ
+ 3MT

∫ T

0

E ∥Λ(s, zns + ys)− Λ(s, zs + ys)∥2 ds

+ 3mM

m∑
k=1

E
∥∥Ik(zn(t−k ) + y(t−k ))− Ik(z(t

−
k ) + y(t−k ))

∥∥2
→ 0 as n → ∞.

Thus, Θ2 is continuous.
Claim 2. Θ2 maps Bk into equicontinuous. Let z ∈ Bk and τ1, τ2 ∈ [0,T],
τ1, τ2 ∈ tk, k = 1, ...m,

E ∥(Θ2z)(τ2)− (Θ2z)(τ1)∥2

≤ 6E

∥∥∥∥∫ τ1

0

[R(τ2 − s)−R(τ1 − s)] Λ(s, zs + ys)ds

∥∥∥∥2
+ 6E

∥∥∥∥∫ τ1

0

[R(τ2 − s)−R(τ1 − s)]Bu(s)ds

∥∥∥∥2
+ 6E

∥∥∥∥∥ ∑
0<tk<t

[R(τ2 − tk)−R(τ1 − tk)] Ik(z(t
−
k ) + y(t−k ))

∥∥∥∥∥
2

+ 6E

∥∥∥∥∫ τ2

τ1

R(τ2 − s)Λ(s, zs + ys)ds

∥∥∥∥2
+ 6E

∥∥∥∥∫ τ2

τ1

R(τ2 − s)Bu(s)ds

∥∥∥∥2
+ 6E

∥∥∥∥∥ ∑
τ1<tk<τ2

[R(τ2 − tk)] Ik(z(t
−
k ) + y(t−k ))

∥∥∥∥∥
2

.

From (13), Holder’s inequality, it follows that

E ∥(Θ2z)(τ2)− (Θ2z)(τ1)∥2 ≤ 6T
∥∥∥∥∫ τ1

0

∥R(τ2 − s)−R(τ1 − s)∥
∥∥∥∥2 pr∗(s)ds
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+ 6TMbG
∫ τ1

0

∥R(τ2 − s)−R(τ1 − s)∥2 ds

+ 6m
∑

0<tk<τ1

∥R(τ2 − tk)−R(τ1 − tk)∥2 M̃k

+ 6T
∫ τ2

τ1

∥R(τ2 − s)∥2 pr∗(s)ds

+ 6TMbG
∫ τ2

τ1

∥R(τ2 − s)∥2

+ 6mM
∑

τ1<tk<τ2

M̃k.

The RHS is independent of z ∈ Bk and tends to zero as τ2 − τ1 → 0, since the
compactness of R(t)t>0 implies the continuity in the uniform operator topology.
Thus, Θ2 maps Bk into an equicontinuous family of functions. The equicontin-
uous for the cases τ1 < τ2 ≤ 0 and τ1 < 0 < τ2 are obvious.
Claim 3. (Θ2Bk)(t) is precompact set in X. Let 0 < t ≤ T be fixed, 0 < ϵ < t,
for z ∈ Bk,

(Θ2,ϵz)(t) = R(ϵ)

∫ t−ϵ

0

R(t− s− ϵ)Λ(s, zs + ys)ds

+ R(ϵ)

∫ t−ϵ

0

R(t− s− ϵ)Buz+y(s)ds

+ R(ϵ)
∑

0<tk<t−ϵ

R(t− tk − ϵ)Ik(z(t
−
k ) + y(t−k )).

and

(Θ̃2,ϵz)(t) =

∫ t−ϵ

0

R(t− s)Λ(s, zs + ys)ds+

∫ t−ϵ

0

R(t− s)Buz+y(s)ds

+
∑

0<tk<t

R(t− tk)Ik(z(t
−
k ) + y(t−k )).

Using (13) and the compactness of R(t)t>0, we obtain Vϵ(t) =
{
(Θ2,ϵz)(t) : z ∈

Bk

}
is relative compact in X ∀ ϵ, 0 < ϵ < t. And also by Lemma2.5 , Holder

inequality, for each z ∈ Bk, we get

E
∥∥∥(Θ2,ϵz)(t)− (Θ̃2,ϵz)(t)

∥∥∥2
≤ 3T

∫ t−ϵ

0

∥R(ϵ)R(t− s− ϵ)−R(t− s)∥2L(X) E ∥Λ(s, zs + ys)∥2 ds

+ 3TMbG
∫ t−ϵ

0

∥R(ϵ)R(t− s− ϵ)−R(t− s)∥2L(X) ds

+ 3m
∑

t−ϵ<tk<t

∥R(ϵ)R(t− tk − ϵ)−R(t− tk)∥2L(X) E
∥∥Ik(z(t−k ) + y(t−k ))

∥∥2
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So the set Ṽϵ(t) =
{
(Θ̃2,ϵz)(t) : z ∈ Bk

}
is precompact in X by using the total

boundedness. Then for z ∈ Bk, we have

E
∥∥∥(Θ2z)(t)− (Θ̃2,ϵz)(t)

∥∥∥2
≤ 3T

∫ t

t−ϵ

∥R(t− s)∥2 E ∥Λ(s, zs + ys)∥2 ds

+ 3TMbG
∫ t

t−ϵ

∥R(t− s)∥2 ds

+ 3m
∑

t−ϵ<tk<t

∥R(t− tk)∥2 E
∥∥Ik(z(t−k ) + y(t−k ))

∥∥2
≤ 3TM

∫ t

t−ϵ

pr∗(s)ds+ 3TMbGMϵ+ 3mM
∑

t−ϵ<tk<t

M̃k.

Therefore,

E
∥∥∥(Θ2z)(t)− (Θ̃2,ϵz)(t)

∥∥∥2 → 0, as ϵ → 0+,

and there are precompact sets arbitrarily close to the set V(t) =
{
(Θ2,ϵz)(t) :

z ∈ Bk

}
, Thus the set V(t) is also precompact in X. Thus, by Arzela-Ascoli

theorem Θ2 is compact. Thus, by Krasnoselskii fixed point theorem there exists
a fixed point z(.) for Θ̂ on Bk. If we define x(t) = z(t) + y(t), −∞ < t ≤ T, it
is easy to say that x(.) is a mild solution of (1)-(3) satisfing x0 = φ, x(T) = x1.
Hence the proof. □

4. Application

We consider the neutral impulsive stochastic functional integrodifferential
equations with infinite delays, driven by a fBm of the form:

∂

∂t

[
x(t, ζ)− Γ̄(t, x(t− k, ζ)

]
=

∂2

∂2ζ

[
x(t, ζ) + Γ̄(t, x(t− k, ζ)

]
+

∫ t

0

B̄(t− s)
∂2

∂2ζ

[
x(t, ζ) + Γ̄(t, x(t− k, ζ)ds

]
+ Λ̄(t, x(t− k, ζ) + c(ζ)u(t) + Ξ̄

dBH

dt
, for t ̸= tk, t ≥ 0 (16)

∆x(tk, ζ) = x(t+k , ζ)− x(t−k , ζ) =

∫ tk

−∞
αk(t

−
k − s)x(s, ζ)ds, k = 1, 2, ...m,

x(t, 0) = x(t, π) = 0, 0 ≤ t ≤ T,
x(s, ζ) = φ(s, ζ), −∞ < s ≤ 0, 0 ≤ ζ ≤ π;
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where BH(t) is cylindrical fBm, and φ : (−∞, 0]×[0, π] → R is a given continuous

stochastic process such that ∥φ∥2BH
< ∞. We take X = Y = U = L2([0, π]) with

norm ∥·∥. Define A : D(A) ⊂ X → X given by A = ∂2

∂2ζ with D(A) =

{
y ∈ X :

y
′
is absolutely continuous y

′′ ∈ X, y(0) = y(π) = 0

}
, thus

Ax =

∞∑
n=1

n2 < x, en > en, x ∈ D(A),

where en =
√

2
π sinnx, n = 1, 2, ... is an orthogonal set of eigenvector of A. The

phase function H(s) = e4s, s < 0, then l =
∫ 0

−∞ H(s)ds = 1/4 < ∞ and the
phase space BH is Banach space with

∥φ∥BH
=

∫ 0

−∞
H(s) sup

θ∈[s,0]

E(∥φ(θ)∥2)1/2ds.

System (16) can written in the abstract formulation of the system (1)-(3) as
follows:

For (t, φ) ∈ [0,T]×BH, where φ(θ)(ζ) = φ(θ, ζ), (θ, ζ) ∈ (−∞, 0]× [0, π], we
put x(t)(ζ) = x(t, ζ). The functions Γ,Λ : [0,T] × BH × X → X, Ξ : [0,T] →
L0
2(Y,X) are defined by

Γ(t, x(t− k, ζ))ds = Γ̄(t, x(t− k, ζ))ds)

Λ(t, x(t− k, ζ))ds) + c(ζ)u(t) = Λ̄(t, x(t− k, ζ))ds) + c(ζ)u(t).

Further, we assume that B : U → X is defined by

Bu(t)(ζ) = c(ζ)u(t), 0 ≤ ζ ≤ π, u ∈ L2([0,T];U).

and the linear operator W : L2([0,T];U) → X by

Wu(ζ) =

∫ T

0

R(T− s)c(ζ)u(t)ds, 0 ≤ ζ ≤ π.

Let kerW =

{
x ∈ L2([0,T];U),Wx = 0

}
be the null space of W and [kerW]⊥

be its orthogonal complement in L2([0,T];U). Let W̃ = [kerW]⊥ → Range(W)
be the restriction of W to [kerW]⊥, W is necessarily one-to-one. The inverse

mapping theorem tells that W̃−1 is bounded since [kerW]⊥ and Range(W) are
Banach spaces. So that W−1 is bounded and takes values in L2([0,T];U) kerW,
assumption (H8) is satisfied. Hence, verify the assumptions on Theorem 3.1 are
satisfied and hence, the system (16) is controllable on (−∞,T].
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