과제정보
This work was supported by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project Number 20010851).
참고문헌
- M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, W. K. Dierkes, and A. Blume, "Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking", Tribol. Int., 131, 191 (2019).
- S.-L. Koo, H.-S. Tan, and M. Tomizuka, "Nonlinear tire lateral force versus slip angle curve identification", Proceedings of the 2004 American Control Conference, Boston, 2128 (2004).
- A. Todorut and N. Cordos, "Evaluation of the vehicle sideslip angle according to different road conditions", ed. by N. Burnete and B. O. Varga, p.814, Springer, 2019.
- M. Heinz, "An universal method to predict wet traction behaviour of tire tread compounds on the laboratory", J. Rubber Res., 13, 91 (2010).
- A. Doria, M. Tognazzo, G. Cusimano, V. Bulsink, A. Cooke, and B. Koopman, "Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics", Veh. Syst. Dyn., 51, 405 (2013).
- N. Rao, "An approach to rollover stability in vehicles using suspension relative position sensors and lateral acceleration sensors", Texas A&M University master thesis, 2005.
- W. F. Milliken and D. L. Milliken, "Race Car Vehicle Dynamics", SAE International, 1995.
- K. Nam, "Application of novel lateral tire force sensors to vehicle parameter estimation of electric vehicles", Sensors, 15, 28385 (2015).
- E. M. Kasprzak, K. E. Lewis, and D. L. Milliken, "Tire Asymmetries and Pressure Variations in the Radt/Milliken Nondimensional Tire Model", Proceeding of the SAE Automotive Dynamics, Stability and Controls Conference and Exhibition, USA., 1 (2006).
- J. Kim, "Estimation of tire forces using vehicle linear accelerations and yaw rate", Trans. Korean Soc. Automot. Eng., 27, 747 (2019).
- M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, T. Tolpekina, and A. Blume, "A new horizon for evaluating tire grip within a laboratory environment", Tribol. Lett., 68, 37 (2020).
- A. K. Bhowmick, "Ridge formation during the abrasion of elastomers", Rubber Chem. Technol., 55, 1055 (1982).
- A. Schallamach, "Friction and abrasion of rubber", Wear, 1, 384 (1958).
- A. Zmitrowicz, "Wear patterns and laws of wear - a review", J. Theor. Appl. Mech., 44, 219 (2006).
- B. Setiyana, R. Ismail, J. Jamari, and D. J. Schipper, "An analytical study of the wear pattern of an abraded rubber surface: the interaction model", Tribol.-Mater. Surf. Interfaces, 12, 186 (2018).
- Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion, Part I: abrasion pattern formation in natural rubber vulcanizate", Wear, 171, 195 (1994).
- Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion Part 2. general rule in abrasion pattern formation in rubber-like materials", Wear, 178, 109 (1994).
- K. A. Grosch, "Rubber abrasion and tire wear", Rubber Chem. Technol., 81, 470 (2008).
- Y. Uchiyama and Y. Ishino, "Pattern abrasion mechanism of rubber", Wear, 158, 141(1992).
- G. Tong and X. Jin, "Study on the simulation of radial tire wear characteristics", WSEAS Trans. Syst., 11, 419 (2012).
- S.-S. Choi, S. R. Yang, E. Chae, and C. E. Son, "Influence of carbon black contents and rubber compositions on formation of wear debris of rubber vulcanizates", Elast. Compos., 55, 108 (2020). https://doi.org/10.7473/EC.2020.55.2.108
- C. E. Son, S. R. Yang, and S.-S. Choi, "Abrasion behaviors of NR/BR compounds using laboratory abrasion tester", Elast. Compos., 56, 12 (2021).
- E. Chae, S. R. Yang, and S.-S. Choi, "Test method for abrasion behavior of tire tread compounds using the wear particles", Polym. Test, 115, 107758 (2022).
- I. Jarlskog, A.-M. Stromvall, K. Magnusson, M. Gustafsson, M. Polukarova, H. Galfi, M. Aronsson, and Y. Andersson-Skold, "Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater", Sci. Total Environ., 729, 138950 (2020).
- M. L. Kreider, J. M. Panko, B. L. McAtee, L. I. Sweet, and B. L. Finley, "Physical and chemical characterization of tire related particles: Comparison of particles generated using different methodologies", Sci. Total Environ., 408, 652 (2010).
- P. J. Kole, A. J. Lohr, F. G. A. J. V. Belleghem, and A. M. J. Ragas, "Wear and tear of tyres: A stealthy source of micro-plastics in the environment", Int. J. Environ. Res. Public Health, 14, 1265 (2017).
- A. Wik and G. Dave, "Occurrence and effects of tire wear particles in the environment - A critical review and an initial risk assessment", Environ. Pollut., 157, 1 (2009).
- F. Amato, F. R. Cassee, H. D. V. D. Gon, R. Gehrig, M. Gustafsson, W. Hafner, R. M. Harrison, M. Jozwicka, F. J. Kelly, T. Moreno, A. S. H. Prevot, M. Schaap, J. Sunyer, and X. Querol, "Urban air quality: The challenge of traffic non-exhaust emissions", J. Hazard. Mater., 275, 31 (2014).
- C. Sirisinha, P. Sae-oui, K. Suchiva, and P. Thaptong, "Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber", J. Appl. Polym. Sci., 137, 48696 (2020).
- M. H. R. Ghoreishy, M. Alimardani, R. Z. Mehrabian, and S. T. Gangali, "Modeling the hyperviscoelastic behavior of a tire tread compound reinforced by silica and carbon black", J. Appl. Polym. Sci., 128, 1725 (2013).
- T. Miyazaki, "Rubber Composition", European patent EP3459996 (2017).
- S. Schaal, M. Martin, and L. Migliarini, "Tyre having a high wear resistance, tread band and elastomeric composition used therein", U.S. patent 2005O234165 (2005).
- S.-S. Choi and J.-C. Kim, "Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes", J. Ind. Eng. Chem., 18, 1166 (2012).
- S.-S. Choi and D.-H. Han, "Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate", J. Appl. Polym. Sci., 114, 935 (2009).
- P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950).
- S.-S. Choi and E. Kim, "A novel system for measurement of types and densities of sulfur crosslinks of a filled rubber vulcanizate", Polym. Test., 42, 62 (2015).
- W. Salgueiro, A. Marzocca, A. Somoza, G. Consolati, S. Cerveny, F. Quasso, and S. Goyanes, "Dependence of the network structure of cured styrene butadiene rubber on the sulphur content", Polymer, 45, 6037 (2004).
- S.-S. Choi, I.-S. Kim, and C.-S. Woo, "Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica", J. Appl. Polym. Sci., 106, 2753 (2007).
- A. Y. Coran, "Vulcanization: conventional and dynamic", Rubber Chem. Technol., 68, 351 (1995).
- A. Mousa and J. Karger-Kocsis, "Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites", Macromol. Mater. Eng., 286, 260 (2001).
- M. Jacob, S. Thomas, and K. T. Varughese, "Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites", Compos. Sci. Technol., 64, 955 (2004).
- A. H. Muhr and A. D. Roberts, "Rubber abrasion and wear", Wear, 158, 213 (1992).
- J. K. Oleiwi, M. S. Hamza, and M. Sh. Abed, "Improving the properties of the tire tread by adding SiO2 and Al2O3 to SBR rubber", Int. J. Appl. Eng. Res., 5, 1637 (2010).
- C. Sirisinha, P. Sae-oui, K. Suchiva, and P. Thaptong, "Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber", J. Appl. Polym. Sci., 137, 48696 (2020).
- N. Torbati-Fard, S. M. Hosseini, and M. Razzaghi-Kashani, "Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates", Polym. J., 52, 1223 (2020).
- E. Chae and S.-S. Choi, "Influence of particle size on inhomogeneity in rubber compositions of NR/BR blend wear particles by single particle analysis", Polym. Adv. Technol., 33, 897 (2022).