• Title/Summary/Keyword: slip angle

Search Result 295, Processing Time 0.029 seconds

TECHNIQUE OF SEPARATE MEASURING SIDE SLIP FOR TOE ANGLE AND CAMBER ANGLE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.681-686
    • /
    • 2006
  • The current flat type side slip tester measures only the total side slip. Therefore, measurement techniques which can be used to determine the side slip for each alignment element were examined. Because the side slip related to the camber angle varies depending on the unit load per travel wheel while the side slip related to the toe angle does not on the unit per travel wheel, but depends only on the direction of the tire, the side slip for each alignment element can be determined separately.

Abrasion Behaviors of NR/BR Compounds Using Laboratory Abrasion Tester

  • Son, Chae Eun;Yang, Seong Ryong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.12-19
    • /
    • 2021
  • The abrasion behaviors of NR/BR blend vulcanizates were investigated using NR/BR = 100/0, 80/20, and 60/40 compounds. The abrasion test was performed using a laboratory abrasion tester (LAT) at slip angles of 1° and 7°. The size distributions of the wear particles and the abrasion rates were examined according to the rubber compositions and slip angles. The most abundant wear particles at the slip angle of 1° were sizes above 1,000 ㎛, irrespective of the rubber composition. The most abundant wear particles at 7° slip angle had sizes in the range of 212-500 ㎛, except for the NR = 100 sample. The wear particle size distribution shifted to a smaller size as the slip angle and BR content increased. The abrasion rate at 7° was much larger than that at 1° slip angle. Furthermore, the abrasion rate was notably increased by adding BR to NR.

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Optimal Wheel Slip Control for Vehicle Stability During Cornering (선회시 차량의 주행 안정성을 위한 최적의 구동차륜 슬립제어)

  • 박종현;김찬영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.190-198
    • /
    • 1997
  • Traction control systems are used to prevent the wheel slippage and to maximize the traction force. A new scheme of controlling the wheel slip during cornering by varying the slip ration as a function of the slip angle is proposed and dynamically simulated with the model of a front wheel driven passenger vehicle. Simulation results show that the proposed scheme is superior to conventional ones based on the fixed slip ratio during cornering and lane changes.

  • PDF

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

Autonomous Vehicle Driving Control Considering Tire Slip and Steering Actuator Performance (타이어 슬립과 조향작동장치의 성능을 고려한 무인자동차 자율주행 제어)

  • Park, C.H.;Gwak, G.S.;Jeong, H.U.;Hong, D.U.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.36-43
    • /
    • 2015
  • An autonomous vehicle control algorithm based on Ackerman Geometry is known to be reliable in low tire slip situation. However, vehicles at high speed make lateral errors due to high tire slip. In this paper, considering the tire slip of vehicles, the steering angle is determined based on the Ackerman Geometry and is supplemented tire slip angle by the Stanley steering algorithm. In addition, to prevent the tire slip, the algorithm, which restricts steering if a certain level of slip occurs, is used to reduce the lateral error. While many studies have been extended to include vehicle slip, studies also need to be carried out on the tire slip depending on hardware performance. The control algorithm of autonomous vehicles is compensated considering the sensor noise and the performance of steering actuator. Through the various simulations, it was found that the performance of steering actuator was the key factor affecting the performance of autonomous driving. Also, it was verified that the usefulness of steering algorithm considering the tire slip and performance of steering actuator.

Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle (Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계)

  • Song, Jeong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

Analysis on the Shift Characteristics of Semi-Spherical CVT using 2-dimensional Friction Model (2차원 마찰모델을 이용한 구면무단변속기의 변속특성해석)

  • Kong, Jin-Hyung;Lim, Won-Sik;Park, Yeon-Gil;Kim, Jung-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.103-109
    • /
    • 2008
  • Semi-spherical CVT(SS-CVT) is one of friction drives, which transmits power via the friction force between a spherical shaped variator and output disks. The variator varies the speed ratio of SS-CVT continuously as well as transmits input power into the output shaft. Therefore two friction forces are normally applied on the variator; one is the longitudinal friction force for power transmission and the other is the lateral for shifting. In order to investigate the dynamic behavior of SS-CVT, we introduced a numerical model of 2-dimensional friction force using a function of slip ratio and slip angle. And a dynamic model, which describes the shifting mechanism of SS-CVT, is developed through 3-dimensional vector analysis. Finally we presented numerical results of the shift characteristics focused on the transient behavior of the variator's slip ratio and slip angle. The numerical results also show the typical CVT shifting characteristics of SS-CVT and stable shifting behaviors of the variator.

Study on Earth Pressure Acting Against Caisson Structure with the Heel (뒷굽이 있는 케이슨 안벽에 작용하는 토압에 대한 연구)

  • Yoo, Kun-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.67-76
    • /
    • 2017
  • In this study, the effect of caisson heel on the active earth pressure is investigated. Using limit analysis method, inclinations of slip surface developed above the heel with different lengths are analyzed. The shorter the heel length, the larger those of inside slip surface, however those of outside slip surface are not changed. According to the relative heel length, relationships of internal friction angle of backfill material - wall friction angle between caisson structure and backfill - friction angle acting on virtual section at the end of heel are presented. Earth pressures acting against caisson structure with relatively short heel are smaller than Rankine earth pressure but always greater than Coulomb earth pressure which does not consider the heel length.

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals (단결정 압축 변형 거동의 변형구배 결정소성 유한요소해석)

  • Jung, Jae-Ho;Cho, Kyung-Mox;Choi, Yoon Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.679-687
    • /
    • 2017
  • A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.