DOI QR코드

DOI QR Code

Operation Reliability and Energy Optimization for a Hot-standby Cooling System of Data Center

핫-스탠바이 기반 냉각시스템 운전을 통한 데이터센터 운영 신뢰성 및 에너지 효율화에 관한 연구

  • Cho, Jinkyun (Dept. of Building and Plant Engineering, National Hanbat University)
  • 조진균 (국립한밭대학교 설비공학과)
  • Received : 2022.12.30
  • Accepted : 2023.03.07
  • Published : 2023.03.30

Abstract

In a data center, a cooling system is a crucial factor in ensuring uninterrupted operation and quick response to changes in IT services. This study proposes a cooling system based on hot standby sparing (HSP) that can effectively provide redundancy and optimize energy efficiency in data centers with N+1 or more equipment required for reliable uninterrupted operation. The standby strategy adopted for ensuring high reliability in data centers was classified into HSP, warm standby (WSP), and cold standby (CSP). If the cooling system meets the redundancy requirement of N+1 or higher, which is necessary for a dedicated data center, and the configuration of VSD/VFD equipment, then the HSP-based cooling system should be considered first in terms of energy efficiency. Through a case analysis of 30 MW-class large-scale A-data centers, the CSP-based and HSP-based cooling systems were compared. The results showed that the cooling power consumption for the same design capacity was reduced by approximately 15% when applying the HSP-based system compared to the CSP system. The power usage effectiveness (PUE) of the HSP-based cooling system was 1.20, and the cooling energy cost was 163 USD/IT-kW, indicating that the HSP-based system significantly improved energy efficiency. Thus, the HSP-based cooling system is the best strategy for effectively reducing cooling energy without requiring major facility changes or investments.

Keywords

Acknowledgement

본 성과는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2022R1F1A1068262). 또한, 프로젝트 정보지원을 해주신 (주)한일엠이씨에 감사드립니다.

References

  1. AFCOM (2021). The 2021 state of the data center report: A look at the evolution of our industry 5th edition, The Association for Computer Operations Management.
  2. Al-Badri, A. R., & Al-Hassani, A. H. (2020). A control method using adaptive setting of electronic expansion valve for water chiller systems equipped with variable speed compressors, International Journal of Refrigeration, 119, 102-109. https://doi.org/10.1016/j.ijrefrig.2020.06.008
  3. ASHRAE TC 9.9. (2009). Design Considerations for Datacom Equipment Centers, American Society of Heating Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA, USA.
  4. Chang, C. C., Shieh, S. S., Jang, S. S., Wu, C. W., & Tsou, Y. (2015). Energy conservation improvement and ON-OFF switch times reduction for an existing VFD-fan-based cooling tower, Applied Energy, 154, 491-499. https://doi.org/10.1016/j.apenergy.2015.05.025
  5. Cho, J. (2021). An Analysis of the Data Center Energy Consumption Structure for Efficient Energy Utilization, Journal of the Architectural Institute of Korea, 37(8), 153-164. https://doi.org/10.5659/JAIK.2021.37.8.153
  6. Cho, J., & Kim, Y. (2016). Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center, Applied Energy, 165, 967-982. https://doi.org/10.1016/j.apenergy.2015.12.099
  7. Cho, J., Lim, T., & Kim, B. S. (2009). Measurements and predictions of the air distribution systems in high compute density (Internet) data centers, Energy and Buildings, 41, 1107-1115. https://doi.org/10.1016/j.enbuild.2009.05.017
  8. Cho, J., Lim, T., & Kim, B. S. (2012). Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: Case study, Energy and Buildings, 55, 189-197. https://doi.org/10.1016/j.enbuild.2012.08.012
  9. Cho, J., Park, B., & Jang, S. (2022). Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE, Energy, 258, 124787.
  10. Cho, J., Park, B., & Jeong, Y. (2019). Thermal performance evaluation of a data center cooling system under fault conditions, energies, 12(15), 2996.
  11. Cho, J., & Park, W. (2022). A case study on remodeling strategies of mission critical facility for existing data centers based on IT power density, Journal of the Architectural Institute of Korea, 38(5), 147-158.
  12. Craig, B. S., & Kelly, E. P. (2016). Energy Management Principles (Second Edition), Elsevier.
  13. Ding, J., Zhang, H., Leng, D., Xu, H., Tian, C., & Zhai, Z. (2022). Experimental investigation and application analysis on an integrated system of free cooling and heat recovery for data centers, International Journal of Refrigeration, 136, 142-151. https://doi.org/10.1016/j.ijrefrig.2022.01.003
  14. Greenberg, S. (2013). Variable-speed fan retrofits for computer-room air conditioners, The U.S. Department of Energy, Federal Energy Management Program.
  15. Han, Z., Sun, X., Wei, H. Ji, Q., & Xue, D. (2021). Energy saving analysis of evaporative cooling composite air conditioning system for data centers, Applied Thermal Engineering, 186, 116506.
  16. KOSIS (2021). OECD energy price in 2018-2020, Korean Statistical Information Service, Statistics Korea.
  17. Kusiak, A., & Li, M. (2010). Cooling output optimization of an air handling unit. Applied Energy, 87(3), 901-909. https://doi.org/10.1016/j.apenergy.2009.06.010
  18. Lee, K-P., & Chen, H. (2013). Analysis of energy saving potential of air-side free cooling for data centers in worldwide climate zones, Energy and Buildings, 64, 103-112. https://doi.org/10.1016/j.enbuild.2013.04.013
  19. Lee, T. S., Liao, K. Y., & Lu, W. C. (2012). Evaluation of the suitability of empirically-based models for predicting energy performance of centrifugal water chillers with variable chilled water flow, Applied Energy, 93, 583-595.
  20. Levitin, G., Xing, L., & Dai, Y. (2018). Heterogeneous 1-out-of-N warm standby systems with online check pointing, Reliability Engineering & System Safety, 169, 127-136. https://doi.org/10.1016/j.ress.2017.08.011
  21. Li, Y., Liu, M., & Lau, J. (2015). Development of a variable speed compressor power model for single-stage packaged DX rooftop units. Applied Thermal Engineering, 78, 110-117. https://doi.org/10.1016/j.applthermaleng.2014.12.038
  22. Li, X., Zhang, C., Sun, X., Han, Z., & Wang, S. (2022). Experimental study on reliable operation strategy for multi-split backplane cooling system in data centers, Applied Thermal Engineering, 211, 118494.
  23. Ling, L., Zhang, Q., Yu, Y., & Liao, S. (2021). A state-of-the-art review on the application of heat pipe system in data centers, Applied Thermal Engineering, 199, 117618.
  24. Ma, X., Liu, B., Yang, L., Peng, R., & Zhang, X. (2020). Reliability analysis and condition-based maintenance optimization for a warm standby cooling system, Reliability Engineering & System Safety, 193, 106588.
  25. Matthew, D., & Bill. W. (2017). Technical paper: duty and standby arrangements for VRF and DX cooling systems, ICE Publishing.
  26. Nadjahi, C., Louahlia, H., & Lemasson, S. (2018). A review of thermal management and innovative cooling strategies for data center, Sustainable Computing: Informatics and Systems, 19, 14-28. https://doi.org/10.1016/j.suscom.2018.05.002
  27. Olszewski, P. (2022). Experimental analysis of ON/OFF and variable speed drive controlled industrial chiller towards energy efficient operation, Applied Energy, 309, 118440.
  28. Oro, E., Depoorter, V., Pflugradt, N., & Salom, J. (2015). Overview of direct air free cooling and thermal energy storage potential energy savings in data centres, Applied Thermal Engineering, 85, 100-110. https://doi.org/10.1016/j.applthermaleng.2015.03.001
  29. Qureshi, T. Q., & Tassou, S. A. (1996). Variable-speed capacity control in refrigeration systems, Applied Thermal Engineering, 16(2), 103-113.
  30. Saidur, R., Mekhilef, S., Ali, M. B., Safari, A., & Mohammed, H. A. (2012). Applications of variable speed drive (VSD) in electrical motors energy savings, Renewable and Sustainable Energy Reviews, 16(1), 543-550. https://doi.org/10.1016/j.rser.2011.08.020
  31. Schibuola, L., Scarpa, M., & Tambani, C. (2018). Variable speed drive (VSD) technology applied to HVAC systems for energy saving: an experimental investigation, Energy Procedia, 148, 806-813. https://doi.org/10.1016/j.egypro.2018.08.117
  32. Stewart, M. (2019). Centrifugal pumps, surface production operations, Gulf Professional Publishing.
  33. Sulaiman, M. W., Daraghmeh, H. M., & Wang, C. C. (2020). Energy-saving potential of separated two-phase thermosiphon loops for data center cooling, Journal of Thermal Analysis and Calorimetry, 141, 245-265. https://doi.org/10.1007/s10973-020-09499-w
  34. Takacs, G. (2018). Electrical submersible pumps manual (second edition), Gulf Professional Publishing.
  35. TIA. (2017). ANSI/TIA-942-2017-Telecommunications Infrastructure Standard for Data Centers, The Telecommunications Industry Association.
  36. Tirmizi, S. A., Gandhidasan, P., & Zubair, S. M. (2012). Performance analysis of a chilled water system with various pumping schemes, Applied Energy, 100, 238-248. https://doi.org/10.1016/j.apenergy.2012.05.052
  37. Uptime Institute. (2008). White paper: Tier classifications define site infrastructure performance. 
  38. Uptime Institute. (2021). the 10th annual Uptime Institute global survey of IT and data center managers. 
  39. Xiong, X., Fulpagare, Y., & Lee, P. S. (2021). A numerical investigation of fan wall cooling system for modular air-cooled data center, Building and Environment, 205, 108287.
  40. Yao, Y., Lian, Z., Hou, Z., & Zhou, X. (2004). Optimal operation of a large cooling system based on an empirical model, Applied Thermal Engineering, 24(16), 2303-2321. https://doi.org/10.1016/j.applthermaleng.2004.03.006
  41. Zhang, H., Shao, S., Xu, H., Zou, H., & Tian, C. (2014). Free cooling of data centers: A review, Renewable and Sustainable Energy Reviews, 35, 171-182. https://doi.org/10.1016/j.rser.2014.04.017
  42. Zhang, H., Shao, S., Xu, H., Zou, H., & Tian, C. (2015). Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers, Applied Thermal Engineering, 75, 185-192.