DOI QR코드

DOI QR Code

1200V급 SiC 기반 트렌치 게이트 MOSFET의 전기적 특성에 관한 연구

The Electrical Characteristics of 1200V Trench Gate MOSFET Based on SiC

  • 투고 : 2023.02.22
  • 심사 : 2023.03.20
  • 발행 : 2023.03.31

초록

본 연구에서는 SiC 기반의 1200V급 전력 MOSFET을 최적 설계하기 위하여 공정 및 설계 파라미터를 변화시키면서 실험을 수행한 후, 필수적인 전기적 특성을 도출하였다. 그리고 최종적으로 설계하고자 하는 트렌치 게이트형 SiC 전력 MOSFET 소자의 우수성을 확보하기 위하여 플래너 게이트 SiC 전력 MOSFET을 같은 조건하에 설계하여 전기적인 특성을 도출하여 트렌치 게이트형 SiC 전력 MOSFET 소자와 비교 분석을 하였다. 비교 분석한 결과, 항복전압을 그대로 유지한 상태에서 온 저항은 각각 플래너게이트 전력 MOSFET은 1,840mΩ, 트렌치 게이트 전력 MOSFET는 40mΩ으로 약 40배 이상 우수한 특성을 도출하였다. 온 저항은 에너지 효율에 직접적인 영향을 끼치는 바 에너지 효율에 있어 우수한 결과를 도출한 것으로 판단되었다. 본 실험을 통해 최적화된 소자는 1200V급에 일반적으로 사용되었던 IGBT소자를 충분히 대체 가능한 것으로 판단되었다.

This research was carried out experiments with changing processes and design parameters to optimally design a SiC-based 1200V power MOSFET, and then, essential electrical characteristics were derived. In order to secure the excellence of the trench gate type SiC power MOSFET device to be designed, electrical characteristics were derived by designing it under conditions such as planner gate SiC power MOSFET, and it was compared with the trench gate type SiC power MOSFET device. As a result of the comparative analysis, the on-resistance while maintaining the yield voltage was 1,840mΩ, for planner gate power MOSFET and to 40mΩ for trench gate power MOSFET, respectively, indicating characteristics more than 40 times better. It was judged that excellent results were derived because the temperature resistance directly affects energy efficiency. It is predicted that the devices optimized through this experiment can sufficiently replace the IGBT devices generally used in 1200V class, and that since the SiC devices are wide band gap devices, they will be widely used to apply semiconductors for vehicles using devices with excellent thermal characteristics.

키워드

과제정보

This work was supported by the Industrial Technology Evaluation and Planning Institute's Material Parts Project(20022501) and the Industrial Technology Promotion Agency's Industrial Innovation Talent Fostering Project(P0017308)

참고문헌

  1. Mulpuri V. Rao, J. Tucker, O. W. Holland, N. Papanicolaou, P. H. Chi, J. W. Kretchmer and M. Ghezzo, "Donor Ion-Implantation Doping into SiC," Journal of Electronic Materials, Vol.28, No.3, pp.334-340, 1999. DOI: 10.1007/s11664-999-0036-8
  2. G. J. Phelps, "Dopant ion implantationsimulations in 4H-Silicon Carbide," Modelling and Simulation In Materials Science And Engineering, Vol.12, pp.1139-1146, 2004. DOI: 10.1088/0965-0393/12/6/008
  3. Atul Mahajan, and B. J Skromme, "Designand optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes," Solid State Electronics, Vol.49, pp.945-955, 2005. DOI: 10.1016/j.sse.2005.03.020
  4. David C. Sheridan, Guofu Niu, and John D. Cressler, "Design of single and multiple zonejunction termination extension structures for SiCpower devices," Solid State Electronics, Vol.45, pp.1659- 1664, 2001. DOI: 10.1016/S0038-1101(01)00052-1
  5. Reza Ghandi, Benedetto Buono, MartinDomeij, Gunnar Malm, Carl-Mikael Zetterling, and Mikael Ostling, "High-Voltage 4H-SiC PiN Diodes With Etched Junction TerminationExtension," IEEE Electron Device Letters, Vol.30, No.11, pp.1170-1172, 2009. DOI: 10.1109/LED.2009.2030374
  6. D. H. Kim and S. M. Koo, "Effect of P-Emitter length and structure on Asymmetric SiC MOSFET performance," J. Korean Inst. Electr. Electron. Mater. Eng., Vol.33, No.2, pp.83-87, 2020. DOI: 10.4313/JKEM.2020.33.2.83
  7. J. J. Ahn, K. S. Moon and S. M. Koo, "Optimization of 4H-SiC Vertical MOSFET by current spreading layer and doping level of epilayer," J. Korean Inst. Electr. Electron. Mater. Eng., Vol.23, No.10, pp.767-770, 2010. DOI: 10.4313/JKEM.2010.23.10.767