과제정보
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No. NRF-2021R1F1A1062954).
참고문헌
- P. Bajpai and R. Enbody, "Preparing Smart Cities for Ransomware Attacks," 2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp.127-133, 2020. DOI: 10.1109/ICDIS50059.2020.00023
- O. A. Aslan and R. Samet, "A Comprehensive Review on Malware Detection Approaches," IEEE Access, vol.8, pp.6249-6271, 2020. DOI: 10.1109/ACCESS.2019.2963724
- S. R. Davies, R. Macfarlane and W. J. Buchanan, "Review of Current Ransomware Detection Techniques," 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp.1-6, 2021. DOI: 10.1109/ICEET53442.2021.9659643
- H. K. Lee, J. H. Seong, Y. C. Kim, J. B. Kim, and G.-Y. Gim, "The Automation Model of Ransomware Analysis and Detection Pattern," Journal of the Korea Institute of Information and Communication Engineering, vol.21, no.8, pp.1581-1588, 2017. DOI: 10.6109/jkiice.2017.21.8.1581
- M. Almousa, S. Basavaraju and M. Anwar, "API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models," 2021 18th International Conference on Privacy, Security and Trust (PST), pp.1-7, 2021. DOI: 10.1109/PST52912.2021.9647816
- B. Wang, H. Liu, X. Han and D. Xuan, "RanPAS: A Behavior-based System for Ransomware Detection," 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC), pp.309-314, 2021. DOI: 10.1109/DSC53577.2021.00049
- U. Urooj, B. A. S. Al-rimy, A. Zainal, F. A. Ghaleb, and M. A. Rassam, "Ransomware Detection Using the Dynamic Analysis and Machine Learning: A Survey and Research Directions," Applied Sciences, vol.12, no.1, 2021. DOI: 10.3390/app12010172
- S. H. Lee and J. S. Hwang, "A study on variable selection and classification in dynamic analysis data for ransomware detection," The Korean Journal of Applied Statistics, Vol.31, No4, pp.497-505, 2018. https://doi.org/10.5351/KJAS.2018.31.4.497
- H. S. Kang, S. R. Kim, "Offline Based Ransomware Detection and Analysis Method using Dynamic API Calls Flow Graph," Journal of Digital Contents Society, vol.19, no.2, pp.363-370, 2018. DOI: 10.9728/dcs.2018.19.2.363
- D. H. Choi, (2021) "Graph Database Design and Implementation for Ransomware Detection," Journal of Convergence for Information Technology, Vol.11, no.6, pp.22-32, 2021. DOI: 10.22156/CS4SMB.2021.11.06.024
- J. H. Kwon, J. H. Lee, H. C. Jeong, and H. J. Lee, "Metamorphic Malware Detection using Subgraph Matching," Journal of the Korea Institute of Information Security & Cryptology, vol.21, no.2, pp.37-47, 2011. DOI: 10.1109/ICCKE.2015.7365862
- D. Y. Kim, "Generating Call Graph for PE file," Journal of IKEEE, vol.25, no.3, pp.451-461, 2021. DOI: 10.7471/ikeee.2021.25.3.451
- M. Manna, A. Case, A. Gombe, G. Richard, "Memory analysis of .NET and .Net Core applications," Forensic Science International: Digital Investigation, vol.42, 2022. DOI: 10.1016/j.fsidi.2022.301404
- "ProcDump v.11.0,"https://learn.microsoft.com/ko-kr/sysinternals/downloads/procdump
- "Windows 디버깅 도구(WinDbg),"https://learn.microsoft.com/ko-kr/windows-hardware/drivers/debugger/
- "MalwareBazaar Database," https://bazaar.abuse.ch/browse