DOI QR코드

DOI QR Code

A Study on the Design Method of Hybrid MOSFET-CNTFET based SRAM

하이브리드 MOSFET-CNTFET 기반 SRAM 디자인 방법에 관한 연구

  • Geunho Cho (Department of Electronic Engineering, Seokyeong University)
  • Received : 2023.03.02
  • Accepted : 2023.03.23
  • Published : 2023.03.31

Abstract

More than 10,000 Carbon NanoTube Field Effect Transistors (CNTFETs), which have advantages such as high carrier mobility, large saturation velocity, low intrinsic capacitance, flexibility, and transparency, have been successfully integrated into one semiconductor chip using conventional semiconductor design procedures and manufacturing processes. Three-dimensional multilayer structure of the CNTFET semiconductor chip and various CNTFET manufacturing process research increase the possibility of making the hybrid MOSFET-CNTFET semiconductor chip which combines conventional MOSFETs and CNTFETs together in a semiconductor chip. This paper discusses a methodology to design 6T binary SRAM using hybrid MOSFET-CNTFET. By utilizing the existing MOSFET SRAM or CNTFET SRAM design method, we will introduce a method of designing a hybrid MOSFET-CNTFET SRAM and compare its performance with the conventional MOSFET SRAM and CNTFET SRAM.

높은 캐리어 이동도, 큰 포화 속도, 낮은 고유 정전 용량, 유연성, 그리고 투명성을 장점으로 가진 CNTFET(Carbon NanoTube Field Effect Transistor) 10,000개 이상을 현존하는 반도체 디자인 절차와 공정 프로세서를 활용하여 하나의 반도체 칩에 집적하는데 성공하였다. 제작된 반도체 칩의 3차원 다층 구조와 다양한 CNTFET 생산 공정 연구는 기존 MOSFET과 CNTFET를 하나의 반도체 칩에 함께 사용하는 hybrid MOSFET-CNTFET 반도체 칩 제작에 대한 가능성을 보여주고 있다. 본 논문에서는 hybrid MOSFET-CNTFET을 활용한 6T binary SRAM을 디자인하는 방법에 대해 논하고자 한다. 기존 MOSFET SRAM 또는 CNTFET SRAM 디자인 방법을 활용하여 hybrid MOSFET-CNTFET SRAM을 디자인 하는 방법을 소개하고 그 성능을 기존 MOSFET SRAM 그리고 CNTFET SRAM과 비교하고자 한다.

Keywords

Acknowledgement

This Research was supported by Seokyeong University in 2022 The EDA tool was supported by the IC Design Education Center(IDEC), Korea

References

  1. A. D. Franklin, M. C. Hersam, and H.-S. P. Wong, "Carbon nanotube transistors: Making electronics from molecules," Science, vol.78, no. 6621, pp.726-732, 2022. DOI: 10.1126/science.abp8278
  2. S. Zhang et al., "Emerging Internet of Things driven carbon nanotubes-based devices," Nano Research, vol.15, no.5, pp.4613-4637, 2022. DOI: 10.1007/s12274-021-3986-7
  3. R. Chen et al., "Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation-Part I: CNFET Transistor Optimization," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.30, no.4, pp.432-439, 2022. DOI: 10.1109/TVLSI.2022.3146125
  4. R. Chen et al., "Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation-Part II: CNT Interconnect Optimization," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.30, no.4, pp.440-448, 2022. DOI: 10.1109/TVLSI.2022.3146064
  5. J. Deng and H. . -S. P. Wong, "A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application-Part I: Model of the Intrinsic Channel Region," IEEE Transactions on Electron Devices, vol.54, no.12, pp.3186-3194, 2007. DOI: 10.1109/TED.2007.909030
  6. J. Deng and H. . -S. P. Wong, "A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application-Part II: Full Device Model and Circuit Performance Benchmarking," IEEE Transactions on Electron Devices, vol.54, no.12, pp.3195-3205, 2007. DOI: 10.1109/TED.2007.909043
  7. Yang et al., "High-performance carbon nanotube field-effect transistors with electron mobility of 39.4 cm2 V-1 s-1  using anion-π interaction doping," Carbon, vol.203, pp.761-769, 2023. DOI: 10.1016/j.carbon.2022.12.025
  8. J. Zhou et al., "Carbon Nanotube Radiofrequency Transistors With fT/fMAX of 376/318 GHz," IEEE Electron Device Letters, vol.44, no.2, pp.329-332, 2023. DOI: 10.1109/LED.2022.3227133
  9. C. Liu et al., "Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays," ACS Nano, vol.16, no.12, pp.21482-21490, 2022. DOI: 10.1021/acsnano.2c10007
  10. G. Long et al., "Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays," Nature Communications, vol.13, no.1, pp.6734,
  11. D.-H. Shin et al., "Low-Power Complementary Inverter Based on Graphene/Carbon-Nanotube and Graphene/MoS2 Barristors," Nanomaterials, vol.12, no.21, p.3820, 2022. DOI: 10.3390/nano12213820
  12. Q. Huang et al., "Intrinsically flexible allcarbon-nanotube electronics enabled by a hybrid organic-inorganic gate dielectric," npj Flex. Electron., vol.6, no.1, p.61, 2022. DOI: 10.1038/s41528-022-00190-8
  13. G. Hills et al., "Modern microprocessor built from complementary carbon nanotube transistors," Nature, vol.572, no.7771, pp.595-602, 2019. DOI: 10.1038/s41586-019-1493-8
  14. R. S. Singh et al., "Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform.," Mater. (Basel, Switzerland), vol.15, no.14, 2022. DOI: 10.3390/ma15144935
  15. A. Valluri and S. Musala, "Low leakage, differential read scheme CNTFET based 9T SRAM cells for Low Power applications," Int. J. Electron., pp.1-22, 2022. DOI: 10.1080/00207217.2022.2148289
  16. V. Bakhtiary, A. Amirany, M. H. Moaiyeri, and K. Jafari, "An SEU-hardened ternary SRAM design based on efficient ternary C-elements using CNTFET technology," Microelectron Reliability, vol.140, p.114881, 2023. DOI: 10.1016/j.microrel.2022.114881
  17. A. Sachdeva, D. Kumar, and E. Abbasian, "A carbon nano-tube field effect transistor based stable, low-power 8T static random access memory cell with improved write access time," AEU - International Journal of Electronics and Communications, vol.162, 2023. DOI: 10.1016/j.aeue.2023.154565
  18. A. Darabi, M. R. Salehi, and E. Abiri, "Onesided 10T static-random access memory cell for energy-efficient and noise-immune internet of things applications," International Journal of Circuit and Theory Applications, vol.51, no.1, pp.379-397, 2023. DOI: 10.1002/cta.3408
  19. M. Elangovan and M. Muthukrishnan, "Design of High Stability and Low Power 7T SRAM Cell in 32-NM CNTFET Technology," Journal of Circuits, Systems and Computers, vol.31, no.13, 2022. DOI: 10.1142/S0218126622502334
  20. N. Hajizadeh Bastani and K. Navi, "A LowPower and Robust Quaternary SRAM Cell for Nanoelectronics," Analog Integrated Circuits and Signal Processing, vol.111, no.3, pp.483-493, 2022. DOI: 10.1007/s10470-022-02031-0
  21. G. Cho, "A Study on the Circuit Design Method of CNTFET SRAM Considering Carbon Nanotube Density," Journal of IKEEE, vol.25, no.3, pp.473-478, 2021. https://doi.org/10.7471/IKEEE.2021.25.3.473
  22. PTM Models, http://ptm.asu.edu/
  23. CNFET Models. https://nano.stanford.edu/downloads/stanford-cnfet-model/stanford-cnfet-model-hspice