DOI QR코드

DOI QR Code

BIM-COBie를 활용한 교량 상부구조의 손상정보 관리 방법

A Method for Information Management of Defects in Bridge Superstructure Using BIM-COBie

  • 이상호 (연세대학교 건설환경공학부) ;
  • 이정빈 (연세대학교 건설환경공학부) ;
  • 탁호균 (연세대학교 건설환경공학부) ;
  • 이상호 (연세대학교 건설환경공학부)
  • 투고 : 2022.11.18
  • 심사 : 2022.12.30
  • 발행 : 2023.04.01

초록

교량에 발생하는 손상에 대한 관리 및 평가는 정기적인 점검으로 작성된 보고서와 외관조사망도 및 손상물량표를 포함한 점검 및 진단자료에 기초한다. 이러한 자료 대부분은 2D 기반의 문서형식으로 작성되어 있고, 표준화된 방식으로 디지털화하기 어려워 정해진 목적 외의 활용이 쉽지 않다. 이에 본 연구에서는 점검자료를 기반으로 손상을 포함한 BIM 기반 교량모델을 구축하는 방법을 제시하고, BIM 표준을 준용하는 유지관리용 건설정보교환표준인 COBie (Construction Operations Building Information Exchange)를 사용하여 모델로부터 도출한 스프레드시트 데이터 형식의 손상정보들을 교량모델과 연계하여 관리하고 활용하는 방법을 제시하였다. 또한 전술한 방법들을 이용해 손상이 발생한 교량 상부구조 각 부위별 상태등급을 디지털 데이터 기반으로 자동화된 방법으로 평가하는 방법을 제안하였다. 본 연구에서 제안된 방법들은 PSC I형 콘크리트 교량의 상부구조를 대상으로 검증이 이루어졌으며 그 실효성이 검증되었다.

The data management and the evaluation of defects in the bridge are generally conducted based on inspection and diagnosis data, including the exterior damage map and defect quantity table prepared by periodic inspection. Since most of these data are written in 2D-based documents and are difficult to digitize in a standardized manner, it is challenging to utilize them beyond the defined functionality. This study proposed methods to efficiently build a BIM (Building Information Modeling)-based bridge damage model from raw data of inspection report and to manage and utilize the damage information linking to bridge model through the spread sheet data generated by COBie (Construction Operations Building Information Exchange). In addition, a method to conduct the condition assessment of defects in bridge was proposed based on an automatic evaluation process using digitized bridge member and damage information. The proposed methods were tested using superstructure of PSC-I girder concrete bridge, and the efficiency and effectiveness of the methods were verified.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C1092514).

참고문헌

  1. British Standards Institution (BSI) (2014). BS1192-4: Collaborative Production of Information Part 4: Fulfilling employer's information exchange requirements using COBie - Code of practice.
  2. Chan, B., Guan, H., Hou, L., Jo, J., Blumenstein, M. and Wang, J. (2016). "Defining a conceptual framework for the integration of modelling and advanced imaging for improving the reliability and efficiency of bridge assessments." Journal of Civil Structural Health Monitoring, Vol. 6, No. 4, pp. 703-714. https://doi.org/10.1007/s13349-016-0191-6
  3. Chang, H., Zhao, Y., Rao, Z. and Li, Y. (2020). "Research on intelligent operation and maintenance management of rail telescopic regulator." In 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), IEEE, Beijing, China, pp. 295-298.
  4. Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D. and Nielsen, H. K. (2022). "A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics." Energy and Buildings, Vol. 261, 111988. 
  5. International Organization for Standardization (ISO) (2014). ISO 15686-4: Buildings and Constructed Assets - Service life planning - Part 4: Service life planning using BIM.
  6. Isailovic, D., Stojanovic, V., Trapp, M., Richter, R., Hajdin, R. and Dollner, J. (2020). "Bridge damage: Detection, IFC-based semantic enrichment and visualization." Automation in Construction, Vol. 112, 103088.
  7. Kaewunruen, S., Sresakoolchai, J., Ma, W. and Phil-Ebosie, O. (2021). "Digital twin aided vulnerability assessment and riskbased maintenance planning of bridge infrastructures exposed to extreme conditions." Sustainability, Vol. 13, No. 4, 2051.
  8. Kim, J. S. (2020). Extract mouse click coordinate values from an image, Available at: https://gaussian37.github.io/vision-opencvcoordinate_extraction/ (Accessed: February 10, 2020) (in Korean).
  9. Korea Authority of Land and Infrastructure Safety (KALIS) (2021). BIM Technology application manual for structural safety maintenance of buildings (in Korean).
  10. Korea Infrastructure Safety and Technology Corporation (KISTEC) (2019). Guideline of safety and maintenance of facility (Safety inspection and diagnosis) (in Korean).
  11. Lee, J. B. (2022). IFC BIM-based optimized information model construction for damage condition assessment of cable bridges, MS. Thesis, University of Yonsei, Seoul, Korea.
  12. Lu, R. and Brilakis, I. (2019). "Digital twinning of existing reinforced concrete bridges from labelled point clusters." Automation in Construction, Vol. 105, 102837.
  13. Marzouk, M. and Abdelaty, A. (2012). "Maintaining subways infrastructures using BIM." In Construction Research Congress 2012: Construction Challenges in a Flat World, West Lafayette, Indiana, United States, pp. 2320-2328.
  14. McGuire, B., Atadero, R., Clevenger, C. and Ozbek, M. (2016). "Bridge information modelling for inspection and evaluation." Journal of Bridge Engineering, Vol. 21, No. 4, 04015076.
  15. Ministry of Land Infrastructure and Transport (MOLIT) (2020). Report on the status of road bridges and tunnels (in Korean).
  16. Ministry of Land Infrastructure and Transport (MOLIT) (2022). Implementation guidelines for BIM in construction industry (in Korean).
  17. Sacks, R., Kedar, A., Borrmann, A., Ma, L., Brilakis, I., Huhwohl, P., Simon, D., Uri, K., Raz, Y., Thomas, L., Burcu, E. B. and Sergej, M. (2018). "SeeBridge as next generation bridge inspection: overview, information delivery manual and model view definition." Automation in Construction, Vol. 90, pp. 134-145. https://doi.org/10.1016/j.autcon.2018.02.033
  18. Shin, S. Y., Moon, H. S. and Shin, J. Y. (2022). "BIM-Based maintenance data processing mechanism through COBie standard development for port facility." Applied Sciences, Vol. 12, No. 3, 1304.
  19. Xu, Y. and Turkan, Y. (2019). "BrIM and UAS for bridge inspections and management." Engineering, Construction and Architectural Management, Vol. 27, No. 3, pp. 785-807. https://doi.org/10.1108/ECAM-12-2018-0556