Acknowledgement
본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 기후변화대응기술개발사업(No: NRF-2016M1A2A2940912)을 통해 수행한 과제입니다. 본 연구는 과학기술정보통신부의 지원을 받아 중견연구사업(No: 2021R1A2C2094554)을 통해 수행한 과제입니다.
References
- O'regan, B., Gratzel, M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
- Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., Yanagida, S., "Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells," J. Phys. Chem. B, 106, 10004-10010 (2002). https://doi.org/10.1021/jp020051d
- Khelashvili, G., Behrens, S., Weidenthaler, C., Vetter, C., Hinsch, A., Kern, R., Skupien, K., Dinjus, E., Bonnemann, H., "Catalytic platinum layers for dye solar cells: a comparative study," Thin Solid Films, 511, 342-348 (2006).
- Papageorgiou, N., Maier, W., Gratzel, M., "An iodine/triiodide reduction electrocatalyst for aqueous and organic media," J. Electrochem. Soc., 144, 876-884 (1997). https://doi.org/10.1149/1.1837502
- Pichot, F., Pitts, J. R., Gregg, B. A., "Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells," Langmuir, 16, 5626-5630 (2000). https://doi.org/10.1021/la000095i
- Park, N. G., Kim, K. M., Kang, M. G., Ryu, K. S., Chang, S. H., Shin, Y. J., "Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films," Adv. Mater., 17, 2349-2353 (2005). https://doi.org/10.1002/adma.200500288
- Kim, K., Lee, G.-W., Yoo, K., Kim, D. Y., Kim, J.-K., Park, N.-G., "Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell," J. Photochem. Photobiol. A: Chem., 204 (2-3), 144-147 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.008
- Weerasinghe, H., Sirimanne, P., Franks, G., Simon, G., Cheng, Y., "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 213, 30-36 (2010). https://doi.org/10.1016/j.jphotochem.2010.04.016
- Rahman, M. M., Kang, H. C., Yoo, K., Lee, J.-J., "LowTemperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells," J. Electrochem. Sci. Technol., 13(4), 453-461 (2022). https://doi.org/10.33961/jecst.2022.00262
- Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., Minoura, H., "Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells," Adv. Funct. Mater., 16, 1228-1234 (2006). https://doi.org/10.1002/adfm.200500700
- Li, Y., Lee, W., Lee, D.-K., Kim, K., Park, N.-G., Ko, M. J., "Pure anatase TiO2 "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells," Appl. Phys. Lett., 98, 103301
- Li, Y., Carretero-Palacios, S., Yoo, K., Kim, J. H., JimenezSolano, A., Lee, C.-H., Miguez, H., Ko, M. J., "Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach," Energy Environ. Sci., 9, 2061-2071 (2016). https://doi.org/10.1039/C6EE00424E
- Uchida, S., Tomiha, M., Takizawa, H., Kawaraya, M., "Flexible dye-sensitized solar cells by 28 GHz microwave irradiation," J. Photochem. Photobiol. A: Chem., 164, 93-96 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
- Kim, H., Auyeung, R., Ollinger, M., Kushto, G., Kafafi, Z., Pique, A., "Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells," Appl. Phys. A, 83, 73-76 (2006). https://doi.org/10.1007/s00339-005-3449-0
- Boccaccini, A., Keim, S., Ma, R., Li, Y., Zhitomirsky, I., "Electrophoretic deposition of biomaterials," J. R. Soc. Interface, 7, S581-S613 (2010). https://doi.org/10.1098/rsif.2010.0156.focus
- Noorasid, N., Arith, F., Mustafa, A., Azam, M., Mahalingam, S., Chelvanathan, P., Amin, N., "Current advancement of flexible dye sensitized solar cell: A review," Optik, 254, 168089 (2022).
- Miyasaka, T., Kijitori, Y., Murakami, T. N., Kimura, M., Uegusa, S., "Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers," Chem. Lett., 31, 1250-1251 (2002). https://doi.org/10.1246/cl.2002.1250
- Chiu, W.-H., Lee, K.-M., Hsieh, W.-F., "High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions," J. Power Sources, 196, 3683-3687
- Yum, J.-H., Kim, S.-S., Kim, D.-Y., Sung, Y.-E., "Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 173, 1-6 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.023
- Augello, C., Liu, H., "Surface modification of magnesium by functional polymer coatings for neural applications," Surface Modification of Magnesium and its Alloys for Biomedical Applications, Elsevier, 335-353 (2015).
- Oekermann, T., Zhang, D., Yoshida, T., Minoura, H., "Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization," J. Phys. Chem. B, 108, 2227-2235 (2004). https://doi.org/10.1021/jp034918z
- Zhao, X., Lin, H., Li, X., Li, J., "The effect of compression on electron transport and recombination in plastic TiO2 photoanodes," Electrochim. Acta, 56, 6401-6405
- Ming, L., Yang, H., Zhang, W., Zeng, X., Xiong, D., Xu, Z., Wang, H., Chen, W., Xu, X., Wang, M., "Selective laser sintering of TiO 2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application," J. Mater. Chem. A, 2, 4566-4573 (2014). https://doi.org/10.1039/C3TA14210H
- Chen, L., Tan, W., Zhang, J., Zhou, X., Zhang, X., Lin, Y., "Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells," Electrochim. Acta, 55, 3721-3726 (2010). https://doi.org/10.1016/j.electacta.2010.01.108
- Fu, N.-Q., Fang, Y.-Y., Duan, Y.-D., Zhou, X.-W., Xiao, X.-R., Lin, Y., "High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells," ACS nano, 6, 9596-9605 (2012). https://doi.org/10.1021/nn302944b
- Xiao, Y., Wu, J., Yue, G., Lin, J., Huang, M., Lan, Z., "Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells," Electrochim. Acta, 56, 8545-8550
- Garcia-Alonso, D., Zardetto, V., Mackus, A. J., De Rossi, F., Verheijen, M. A., Brown, T. M., Kessels, W. M., Creatore, M., "Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye-Sensitized Solar Cells," Adv. Energy Mater., 4, 1300831 (2014).
- Yamaguchi, T., Tobe, N.; Matsumoto, D., Nagai, T., Arakawa, H., "Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%," Sol. Energy Mater. Sol. Cells, 94, 812-816 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
- Peng, S., Wu, Y., Zhu, P., Thavasi, V., Mhaisalkar, S. G., Ramakrishna, S., "Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 223, 97-102
- Veerappan, G., Kwon, W., Rhee, S.-W., Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized solar cells. J. Power Sources, 196, 10798-10805
- Yin, X., Wu, F., Fu, N., Han, J., Chen, D., Xu, P., He, M., Lin, Y., "Facile synthesis of poly (3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells," ACS Appl. Mater. Interfaces, 5, 8423-8429 (2013). https://doi.org/10.1021/am401719e
- Ke, C.-R., Chang, C.-C., Ting, J.-M., "Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells," J. Power Sources, 284, 489-496 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.077
- Augello, C., Liu, H., "Surface modification of magnesium by functional polymer coatings for neural applications," Surface Modification of Magnesium and its Alloys for Biomedical Applications, Elsevier, 335-353 (2015).
- Pringle, J. M., Armel, V., MacFarlane, D. R., "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., 46, 5367-5369 (2010). https://doi.org/10.1039/c0cc01400a
- Wang, M., Anghel, A. M., Marsan, B., Cevey Ha, N.-L., Pootrakulchote, N., Zakeeruddin, S. M., Gratzel, M., "CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells," J. Am. Chem. Soc., 131, 15976-15977 (2009). https://doi.org/10.1021/ja905970y
- Yin, X., Xue, Z., Liu, B., "Electrophoretic deposition of Pt nanoparticles on plastic substrates as counter electrode for flexible dye-sensitized solar cells," J. Power Sources, 196, 2422-2426 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.047