DOI QR코드

DOI QR Code

Welfare Policy Visualization Analysis using Big Data -Chungcheong-

빅데이터를 활용한 복지정책 시각화분석 -충청도 중심으로-

  • Dae-Yu Kim (Dept. of Bigdata Industrial Security, Namseoul University) ;
  • Won-Shik Na (Dept. of Computer Science, Namseoul University)
  • 김대유 (남서울대학교 빅데이터산업보안학과) ;
  • 나원식 (남서울대학교 컴퓨터소프트웨어학과)
  • Received : 2023.02.13
  • Accepted : 2023.03.20
  • Published : 2023.03.30

Abstract

The purpose of this study is to analyze the changes and importance of welfare policies in Chungcheong Province using big data analysis technology in the era of the Fourth Industrial Revolution, and to propose stable welfare policies for all generations, including the socially underprivileged. Chungcheong-do policy-related big data is coded in Python, and stable government policies are proposed based on the results of visualization analysis. As a result of the study, the keywords of Chungcheong-do government policy were confirmed in the order of region, society, government and support, education, and women, and welfare policy should be strengthened with a focus on improving local health policy and social welfare. For future research direction, it will be necessary to compare overseas cases and make policy proposals on the stable impact of national welfare policies.

본 연구의 목적은 4차산업혁명 시대의 빅데이터 분석 기술을 활용한 충청도 복지정책 변화와 중요성을 분석하고 사회적 약자를 포함한 모든 세대의 안정적 복지정책을 제안하였다. 충청도 정책 관련 빅데이터를 파이선으로 코딩하여 시각화분석 결과를 토대로 안정적인 정부 정책을 제안한다. 연구 결과 충청도 정부 정책의 키워드는 지역, 사회, 정부 및 지원, 교육, 여성 등의 순으로 확인되었으며, 지역 건강정책과 사회 복지 향상을 중심으로 복지 정책을 강화해야 한다. 향후 연구 방향은 해외사례를 비교하고, 전국적인 복지정책의 안정적인 영향에 관한 정책 제안이 필요할 것이다.

Keywords

References

  1. Curran, C.-S., & Leker, J. (2011). Patentindicators for monitoring convergenceexamples from NFF and ICT. Technological forecasting and socialchange, 78(2), 256 - 273 DOI : 10.1016/j.techfore.2010.06.021
  2. Kim, D. Y., & Bae. J. W. (2022). Analysis of positive ESG image factors of composition using big data analysis. Journal of the Korean Software Appraisal Society, 18(2), 189-199. DOI : 10.29056/jsav.2022.12.19
  3. Jo, J. M. (2019). Effectiveness of Normalization Pre-Processing of Big Data to the Machine Learning Performance. The Journal of the Korea institute of electronic communication sciences, 14(3), 547-552, DOI : 10.13067/JKIECS.2019.14.3.547.
  4. Kim, D. Y., & Bae, J. W. (2022). Analysis of positive ESG image factors of composition using big data analysis. Journal of the Korean Software Appraisal Society, 18(2), 189-199. DOI : 10.29056/jsav.2022.12.19
  5. Kim, S. H., Chang, S. H., & Lee, S. W. (2017). Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data. Journal of Digital Convergence, 15(6), 133-143. DOI : 10.14400/JDC.2017.15.6.133
  6. Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing Methods and applications. Journal of Manufacturing System, 48(2018), 144-156 https://doi.org/10.1016/j.jmsy.2018.01.003
  7. De, M. A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122-135 https://doi.org/10.1108/LR-06-2015-0061
  8. Lee, H. J. (2021). Data-Driven DesignMethodology based on Data ScienceParadigm Focused on Design Research Case Study of Fine Dust Information App Service. The Journal of the Korea Contents Association, 21(10), 103-114. DOI : 10.5392/JKCA.2021.21.10.103
  9. Park, S. H. (2018). Design ThinkingMethodology for Social Innovation usingBig Data and Qualitative Research. Asia-Pacific journal of business and venturing, 13(4), 169-181. DOI : 110.16972/apjbve.13.4.201808.169
  10. Jung, S. M. (2012). A Study on theClassification system and fundamentalnotions of the Peripheral Devices and Accessories in Product Design for Smartphone. Journal of Korea design knowledge, 24(1), 20-29. DOI : 10.17246/jkdk.2012..24.003
  11. Choi, J. H., Lim, J. W., & Kim, S. W. (2022). A study on the commercialization process of welfare technology in the field of health and welfare. Journal of Korean Social Welfare Administration, 24(3), 7-67. DOI : 10.22944/KSWA.2022.24.3.002
  12. Kim, D. Y., & Bae, J. W. (2022). Analysis of positive ESG image factors of composition using big data analysis. Journal of the Korean Software Appraisal Society, 18(2), 189-199. DOI : 10.29056/jsav.2022.12.19
  13. Kim, D. Y., & Bae. J. W. (2022). Analysis of positive ESG image factors of composition using big data analysis. Journal of the Korean Software Appraisal Society, 18(2), 189-199. DOI : 10.29056/jsav.2022.12.19
  14. Kim, D. Y., & Bae, J. W. (2022). Analysis of positive ESG image factors of composition using big data analysis. Journal of the Korean Software Appraisal Society, 18(2), 189-199. DOI : 10.29056/jsav.2022.12.19
  15. Mechtley, A., & Trowbridge, R. (2012). Maya Python for games and film a complete reference for the Maya Python and the Maya Python API. Morgan Kaufmann. Amsterdam Boston, 24(1), 20-88. DOI : 10.9708/jksci.2015.20.4.049