DOI QR코드

DOI QR Code

ITERATIVE PROCESS FOR FINDING FIXED POINTS OF QUASI-NONEXPANSIVE MULTIMAPS IN CAT(0) SPACES

  • Pitchaya Kingkam (Department of Mathematics, Faculty of Science, Lampang Rajabhat University) ;
  • Jamnian Nantadilok (Department of Mathematics, Faculty of Science, Lampang Rajabhat University)
  • Received : 2022.09.20
  • Accepted : 2023.02.24
  • Published : 2023.03.30

Abstract

Let 𝔼 be a CAT(0) space and K be a nonempty closed convex subset of 𝔼. Let T : K → 𝓟(K) be a multimap such that F(T) ≠ ∅ and ℙT(x) = {y ∈ Tx : d(x, y) = d(x, Tx)}. Define sequence {xn} by xn+1 = (1 - α)𝜈n⊕αwn, yn = (1 - β)un⊕βwn, zn = (1-γ)xn⊕γun where α, β, γ ∈ [0; 1]; un ∈ ℙT (xn); 𝜈n ∈ ℙT (yn) and wn ∈ ℙT (zn). (1) If ℙT is quasi-nonexpansive, then it is proved that {xn} converges strongly to a fixed point of T. (2) If a multimap T satisfies Condition(I) and ℙT is quasi-nonexpansive, then {xn} converges strongly to a fixed point of T. (3) Finally, we establish a weak convergence result. Our results extend and unify some of the related results in the literature.

Keywords

Acknowledgement

This research work is supported by Faculty of Science, Lampang Rajabhat University

References

  1. K. Amnuaykarn, P. Kumam, and J. Nantadilok, On the existence of best proximity points of multi-valued mappings in CAT(0) spaces, J. Nonlinear Funct. Anal. 2021 Article ID 25 (2021), 1-14.
  2. M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mathematicki Vesnik 106 (2013), 1-12.
  3. M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.
  4. K.S. Brown, Buildings, Springer, New York (1989).
  5. F. Bruhat, J. Tits, Groupes reductifs sur un corps local. I. Donnees radicielles valuees, Inst. Hautes Etudes Sci. Publ. Math. 41 (1972), 5-251. (in French) https://doi.org/10.1007/BF02715544
  6. C.E. Chidume, C.C.O Chidume, N. Djitte, M.S. Minjibir, Krasnoselskii-type algorithm for fixed points of multi-valued strictly pseudo-contractive mappings, Fixed Point Theory and Applications 2013 2013:58, (2013) .
  7. S. Dhompongsa, W.A. Kirk, and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 35-45.
  8. S. Dhompongsa, B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
  9. H. Fukhar-ud-din, A.R. Khan, Z. Akhtar, Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces, Nonlinear Anal. 75 (2012), 4747-4760. https://doi.org/10.1016/j.na.2012.03.025
  10. H. Fukhar-ud-din, M.A. Khamsi, Approximating common fixed points in hyperbolic spaces, Fixed Point Theory and Applications 2014, 2014:113.
  11. L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Academic Pub., Dordrecht, Netherlands, 1999.
  12. K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, Inc., New York, 1984.
  13. B.A. Ibn Dehaish, M.A. Khamsi, A.R. Khan, Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces, J. Math. Anal. Appl. 397 (2013), 861-868. https://doi.org/10.1016/j.jmaa.2012.08.013
  14. F.O. Isiogugu, Demiclosedness principle and approximation theorems for certain classes of multivalued mappings in Hilbert spaces, Fixed Point Theory and Applications 2013, 2013:61, (2013).
  15. J.S. Jung, Strong convergence theorems for multivalued nonexpansive nonself mappings in Banach spaces, Nonlinear Anal. 66 (2007), 2345-2354. https://doi.org/10.1016/j.na.2006.03.023
  16. S.H. Khan, M. Abbas, and S. Ali, Fixed points of multivalued quasi-nonexpansive mappings using faster iterative process, Acta Mathematica Sinica, English series 30 (7) (2014), 1231-1241. https://doi.org/10.1007/s10114-014-3590-9
  17. W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
  18. S.H. Khan, I. Yildirim, Fixed points of multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications 2012, 2012:73, (2012).
  19. L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, Journal of Mathematical Analysis and Applications 325 (1) (2007), 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081
  20. J.T. Markin, Continuous dependence of fixed point sets, Proc. Am. Math. Soc. 38 (1973), 545-547. https://doi.org/10.1090/S0002-9939-1973-0313897-4
  21. S.B. Jr. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  22. J. Nantadilok, C. Khanpanuk, Best proximity point results for cyclic contractions in CAT(0) spaces, Comm. Math. Appl. 12 (2) (2021), 1-9. https://doi.org/10.26713/cma.v12i1.1412
  23. B. Nanjarus, B. Panyanak, Demicloesed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Applications 210 Article ID 268780, 14 pages, 2010. doi:10.1155/2010/268780
  24. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  25. B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl. 54 (2007), 872-877. https://doi.org/10.1016/j.camwa.2007.03.012
  26. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soci. 43 (1) (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  27. K.P.R. Sastry, G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55 (2005), 817-826. https://doi.org/10.1007/s10587-005-0068-z
  28. Y. Song, Y.J. Cho, Some notes on Ishikawa iteration for multivalued mappings, Bull. Korean. Math. Soc. 48 (3) (2011), 575-584. doi:10.4134/BKMS.2011.48.3.575.
  29. H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings., Proc. Am. Math. Soc. 44 (2) (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  30. Y. Song, H. Wang, Erratum to Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl. 55 (2008), 2999-3002. https://doi.org/10.1016/j.camwa.2007.11.042
  31. N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal. 71 (3-4) (2009), 838-844. https://doi.org/10.1016/j.na.2008.10.112
  32. K. Ullah, J. Ahmad, M. Arshad, Z. Ma, and T. Abdeljawad, An efficient iterative procedure for proximally quasi-nonexpansive Mappings and a class of boundary value problems, Axioms 2022, 11, 90, 15 pages, 2022.