References
- T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126 (1) (2016), 69-78. https://doi.org/10.1007/s12044-015-0255-2
- T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
- H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
- I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
- M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.
- M. Mateljevic, N. Mutavdzc and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, Appl. Anal. Discrete Math., 16 (2022), 111-131. https://doi.org/10.2298/AADM200319006M
- P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
- P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
- M. Nunokawa, J. Sokol and H. Tang, An application of Jack-Fukui-Sakaguchi lemma, Journal of Applie Analysis and Computation, 10 (2020), 25-31.
- M. Nunokawa and J. Sokol, On a boundary property of analytic functions, J. Ineq. Appl., 2017:298 (2017), 1-7. https://doi.org/10.1186/s13660-016-1272-0
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- B. N. Ornek and T. Akyel, On bounds for the derivative of analytic functions at the boundary, Korean J. Math., 29 (4) (2021), 785-800.
- B. N. Ornek and T. Duzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (9) (2018) 1149-1153. https://doi.org/10.1109/TCSII.2018.2809539
- B. N. Ornek and T. Duzenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13 (2) (2019), 145-152. https://doi.org/10.1049/iet-cds.2018.5123
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992.
- H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung , Math. Z., 43 (1938), 739-742. https://doi.org/10.1007/BF01181115