DOI QR코드

DOI QR Code

SOME RESULTS FOR THE CLASS OF ANALYTIC FUNCTIONS CONCERNED WITH SYMMETRIC POINTS

  • Received : 2022.10.17
  • Accepted : 2023.01.03
  • Published : 2023.03.30

Abstract

This paper's objectives are to present the $\mathcal{H}$ class of analytical functions and explore the many characteristics of the functions that belong to this class. Some inequalities regarding the angular derivative have been discovered for the functions in this class. In addition, the symmetry points on the unit disc are used for the obtained inequalities.

Keywords

References

  1. T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126 (1) (2016), 69-78.  https://doi.org/10.1007/s12044-015-0255-2
  2. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013), 571-577.  https://doi.org/10.1080/17476933.2012.718338
  3. H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785.  https://doi.org/10.4169/000298910x521643
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci. 122 (2004), 3623-3629.  https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. 
  6. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.  https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press. 
  8. M. Mateljevic, N. Mutavdzc and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, Appl. Anal. Discrete Math., 16 (2022), 111-131.  https://doi.org/10.2298/AADM200319006M
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis 12 (2018), 93-97.  https://doi.org/10.7153/jca-2018-12-08
  10. P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140-1144.  https://doi.org/10.1515/math-2018-0096
  11. M. Nunokawa, J. Sokol and H. Tang, An application of Jack-Fukui-Sakaguchi lemma, Journal of Applie Analysis and Computation, 10 (2020), 25-31. 
  12. M. Nunokawa and J. Sokol, On a boundary property of analytic functions, J. Ineq. Appl., 2017:298 (2017), 1-7.  https://doi.org/10.1186/s13660-016-1272-0
  13. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517.  https://doi.org/10.1090/S0002-9939-00-05463-0
  14. B. N. Ornek and T. Akyel, On bounds for the derivative of analytic functions at the boundary, Korean J. Math., 29 (4) (2021), 785-800. 
  15. B. N. Ornek and T. Duzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (9) (2018) 1149-1153.  https://doi.org/10.1109/TCSII.2018.2809539
  16. B. N. Ornek and T. Duzenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13 (2) (2019), 145-152.  https://doi.org/10.1049/iet-cds.2018.5123
  17. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. 
  18. H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung , Math. Z., 43 (1938), 739-742. https://doi.org/10.1007/BF01181115