DOI QR코드

DOI QR Code

Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid

  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Humaira Sharif (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed A. Khadimallah (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Hassen Loukil (Department of Electrical Engineering, College of Engineering, King Khalid University) ;
  • Mohamed R. Ali (Faculty of Engineering and Technology, Future University in Egypt, Egypt Basic Engineering Science) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2021.01.31
  • 심사 : 2022.12.07
  • 발행 : 2023.03.25

초록

The characteristics of motile microorganism and three dimensional Darcy-Forchheimer nanofluid flow by a porous rotatable disk with heat generation/absorption is reported. Thermophoretic and Brownian motion aspects are included by utilizing Buongiorno model. Moreover, slip conditions are considered on velocity, thermal, concentration and microorganism. Shooting procedure is implemented to find the numerical results of physical quantities are evaluated parametrically. The different physical parameters like heat sink/source parameter, thermal, Brownian number, thermophoresis parameter, concentration, Peclet number, bioconvected Lewis number, microorganism on concentration and density of motile microorganism distributions is considered. Graphs of concentration and microorganism are plotted to examine the influence of distinct prominent flow parameters.

키워드

과제정보

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444)

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://doi.org/10.1007/BF02614150.
  3. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033.
  4. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  5. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  6. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  7. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  9. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  10. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
  11. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K, and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  13. Chakrabarti, K.M. (1974), "Note on boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://doi.org/10.2514/3.49427.
  14. Chamkha, A.J., Abd El-Aziz, M.M. and Ahmed, S.E. "Effects of thermal stratification on flow and heat transfer due to a stretching cylinder with uniform suction/injection", Int. J. Energy Technol., 2(4), 1-7.
  15. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  16. Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.
  17. Civalek, O . (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  18. Dawar, A., Wakif, A., Thumma, T. and Shah, N.A. (2022), "Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy", Int. Commun. Heat Mass Transf., 130, 105800. https://doi.org/10.1016/j.icheatmasstransfer.2021.105800.
  19. Derakhshandeh, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.
  20. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. http://doi.org/10.12989/anr.2019.7.2.135.
  21. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. http://doi.org/10.12989/anr.2019.7.1.039.
  22. Iqbal, W., Naeem, M.N., Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Adv., 9(5), 055118. http://doi.org/10.1063/1.5092737.
  23. Ishak, A., Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
  24. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", Appl. Math. Mod., 32, 2059-2066. http://doi.org/10.1016/j.apm.2007.06.036.
  25. Khan, M., Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://doi.org/10.1063/1.4937346.
  26. Khan, Z.A., Shah, N.A., Haider, N., El-Zahar, E.R. and Yook, S.J. (2022), "Analysis of natural convection flows of Jeffrey fluid with Prabhakar-like thermal transport", Case Stud. Therm. Eng., 35, 102079. https://doi.org/10.1016/j.csite.2022.102046.
  27. Konch, J., Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://doi.org/10.14257/ijast.2017.99.05.
  28. lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011. https://doi.org/10.1016.j.apt.2016.08.011
  29. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Therm., 88(4), 928-936. ttps://doi.org/10.1007/s10891-015-1267-6.
  30. Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.
  31. Malik, M.Y., Naseer, M., Nadeem, S., Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0.
  32. Naseer, M., Malik, M.Y., Nadeem, S., Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.
  33. Ramesh, G.K., Madhukesh, J.K., Das, R., Shah, N.A. and Yook, S.J. (2022), "Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink", Waves Random Complex Med., 1-21. https://doi.org/10.1080/17455030.2022.2053237.
  34. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H., Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073.
  35. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://doi.org/10.1590/S0104-66322010000400017.
  36. Rehman, A. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math., 4(6), 424-430. http://doi.org/10.11648/j.acm.20150406.15.
  37. Sabu, A.S., Wakif, A., Areekara, S., Mathew, A. and Shah, N.A. (2021), "Significance of nanoparticles' shape and thermohydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: The passive control approach", Int. Commun. Heat Mass Transf., 129, 105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711.
  38. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  39. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.
  40. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A. A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  41. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M., Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
  42. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
  43. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  44. Sun, X., Animasaun, I.L., Swain, K., Shah, N.A., Wakif, A. and Olanrewaju, P.O. (2022), "Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: The case of chemically reactive water conveying copper nanoparticles", ZAMM, 102(4), e202100094. https://doi.org/10.1002/zamm.202100094.
  45. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phys. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827.
  46. Wang, C.Y., Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.