DOI QR코드

DOI QR Code

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution

양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진

  • Moon-Sun Yeom (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Jun-Soo Lee (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Myung-Min Oh (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
  • 염문선 (충북대학교 축산원예식품공학부) ;
  • 이준수 (충북대학교 축산원예식품공학부) ;
  • 오명민 (충북대학교 축산원예식품공학부)
  • Received : 2022.12.22
  • Accepted : 2023.01.18
  • Published : 2023.01.31

Abstract

Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.

자당(suc)은 포도당(glu)과 과당(fru)으로 구성된 이당류로, 식물에서 양분으로 작용하여 탄수화물 공급을 공급하는 분자일 뿐만 아니라, 신호 분자로서도 작용하여 당 특이적 신호전달을 유도하고 유전자 발현과 대사물질을 변화시킨다. 본 연구에서는 쑥에서 생리활성물질의 증진이 뿌리를 통한 자당 흡수로 인한 당 특이적 신호전달로 인한 것인지 아니면 삼투 또는 생물학적 스트레스와 같은 다른 요인으로 인해 유도된 것인지를 확인하고자 수행되었다. 삼투 스트레스와의 비교를 위해 삽목을 통해 발근된 쑥 묘를 정식 4주 후 3일간 만니톨(man)과 suc을 3가지 농도로(10mM, 30mM, 50mM) 호글랜드 양액과 함께 처리하였다. 3일간의 man과 suc 처리는 쑥의 지상부 생체중에 유의적인 차이를 나타내지 않았다. 총 페놀 함량, 총 플라보노이드 그리고 항산화도는 man과 suc 처리구에서 서로 다른 증진 패턴을 보였으며, suc 처리가 man로 유도된 삼투 스트레스와는 다른 기작으로 생리활성물질을 증진시키는 것을 확인하였다. 또한, suc 50mM 처리된 쑥 추출물은 에탄올로 유도된 알코올 자극과 t-BHP로 유도된 산화 스트레스에 대해 각 1.7배, 1.6배 높은 HepG2 cell 보호 효과를 나타냈다. suc처리와 생물학적 스트레스의 비교를 위해 suc 30mM 처리된 용액에서 배양하여 미생물을 얻은 후 이를 suc 30mM과 같이 또는 미생물 만을 정식 후 3주된 쑥에 3일간 양액과 함께 처리하였다. 처리 3일 차에 지상부 생체중의 변화 없이 당 함량이 미생물 처리 여부와 상관없이 suc 처리구들에서 유의적으로 대조구와 미생물 처리에 비해 증가하였다. 또한, 총 페놀 함량과 항산화도 역시 suc 30mM과 suc 와 미생물 혼합 처리구에서 미생물 처리구에 비해 증가하였다. 따라서, 양액 내 suc 처리로 인한 생리활성물질의 증진이 부수적인 스트레스에 의한 것이 아닌, suc 신호전달 효과임을 확인하였다. 본 실험은, 수경재배에서 뿌리를 통한 자당의 신호전달 효과로 인한 생리활성물질의 증진이 유도된다는 가능성을 제시한다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) and the Korea Smart Farm R&D Foundation (KosFarm), through the Smart Farm Innovation Technology Development Program funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA); the Ministry of Science and ICT (MSIT); and the Rural Development Administration (RDA) (421033-4).

References

  1. Ainsworth E.A., and K.M. Gillespie 2007, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875-877. https://doi.org/10.1038/nprot.2007.102
  2. Akula R., and G.A. Ravishankar 2011, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720-1731. doi:10.4161/psb.6.11.17613
  3. Amrhein N., K. Apel, S. Baginsky, N. Buchmann, M. Geisler, F. Keller, C. Korner, E. Martinoia, L. Merbold, C. Muller, M. Paschke, and B. Schmid 2013, Plant Response to stress. In N Amrhein, F Keller, E Martinoia, eds, Response to Drought Stress from the Cellular to the Whole-Plant Level. ETH Library, Zurich, Switzerland, pp 72-84.
  4. Bednarek P., M. Pislewska-Bednarek, A. Svatos, B. Schneider, J. Doubsky, M. Mansurova, M. Humphry, C. Consonni, R. Panstruga, A. Sanchez-Vallet, A. Molina, and P. Schulze-Lefert 2009, A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101-106. doi:10.1126/science.1163732
  5. Briskin D.P. 2000, Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507-514. doi:10.1104/pp.124.2.507
  6. Choi H.J., E.J. Kim, M.J. Han, N.I. Baek, D.H. Kim, H.G. Jung, and N.J. Kim 2007, Hepatoprotective effect of fermented Artemisia princeps PAMPANINI by lactic acid bacteria. Korean J Pharmacogn 38:245-253. (in Korean)
  7. Chung K.S., J.H. Choi, N.I. Back, M.S. Choi, E.K. Kang, H.G. Chung, T.S. Jeong, and K.T. Lee 2010, Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol Nutr Food Res 54:1318-1328. doi:10.1002/mnfr.200900305
  8. Dewanto V., X. Wu, K.K. Adom, and R.H. Liu 2002, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010-3014. doi:10.1021/jf0115589
  9. Dijkwel P.P., P. Kock, R. Bezemer, P.J. Weisbeek, and S. Smeekens 1996, Sucrose represses the developmentally controlled transient activation of the plastocyanin gene in Arabidopsis thaliana seedlings. Plant Physiol 110:453-463. doi:10.1104/pp.110.2.455
  10. Gao H., H. Wang, and J. Peng 2014, Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signaling pathway in HepG2 cancer cells. Cell Biochem Biophys 69:27-34. doi:10.1007/s12013-013-9762-x
  11. Gilberto C.R. 2011, Function of root border cells and their exudates on plant defense in hydroponic systems. PhD Dissertation, Arizona Univ., Tucson, AZ, USA, pp 14-15.
  12. Guo R., G. Yuan, and Q. Wang 2011, Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci Hortic 128:159-165. doi:10.1016/j.scienta.2011.01.014
  13. Guy C.L., J.L.A. Huber, and S.C. Huber 1992, Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100:502-508. doi:10.1104/pp.100.1.502
  14. Ikeda-Iwai M., M. Umehara, S. Satoh, and H. Kamada 2003, Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107-114. doi:10.1046/j.1365-313x.2003.01702.x
  15. Jabeen M., U. Jillani, B.A. Chaudhary, and M. Uzair 2016, Phytochemical and pharmacological studies of Phyla nodiflora (Verbenaceae): a review. Pak J Pharm Res 2:49-54. https://doi.org/10.22200/pjpr.2016149-54
  16. Jefferson R., A. Goldsbrough, and M. Bevan 1990, Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol 14:995-1006. doi:10.1007/BF00019396
  17. Julia W., S. Smeekens, and J. Hanson 2010, Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610-1614. doi:10.1016/j.phytochem.2010.07.007
  18. Kerepesi I., and G. Galiba 2000, Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482-487. doi:10.2135/cropsci2000.402482x
  19. Lee J.Y., K.H. Son, J.H. Lee, and M.M. Oh 2022, Growth characteristics and bioactive compounds of dropwort subjected to high CO2 concentrations and water deficit. Hortic Environ Biotechnol 63:181-194. doi:10.1007/s13580-021-00376-5
  20. Lee M.J., J.E. Son, and M.M. Oh 2013, Growth and phenolic content of sowthistle grown in a closed-type plant production system with a UV-A or UV-B lamp. Hortic Environ Biotechnol 54:492-500. doi:10.1007/s13580-013-0097-8
  21. Miller N.J., and C.A. Rice-Evans 1996, Spectrophotometric determination of antioxidant activity. Redox Rep 2:161-171. doi:10.1080/13510002.1996.11747044
  22. Mosmann T. 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. doi:10.1016/0022-1759(83)90303-4
  23. Mun W., and D.J. Yu 2015, Crop physiology. In W Mun, DJ Yu, eds, Transport and storage of assimilation products. Knowpress, Seoul, Korea, pp 196-204. (in Korean)
  24. Nayyar H., and D. Gupta 2006, Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106-113. doi:10.1016/j.envexpbot.2005.06.021
  25. Oh M.M., E.E. Carey, and C.B. Rajashekar 2010, Regulated water deficits improve phytochemical concentration in lettuce. J Am Soc Hort Sci 135:223-229. doi:10.21273/JASHS.135.3.223
  26. Pollock C., J. Farrar, D. Tomos, J. Gallagher, C. Lu, and O. Koroleva 2003, Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J Exp Bot 54:489-494. doi:10.1093/jxb/erg037
  27. Rook F., N. Gerrits, A. Kortstee, M. van Kampen, M. Borrias, P. Weisbeek, and S. Smeekens 1998, Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253-263. doi:10.1046/j.1365-313X.1998.00205.x
  28. Ruan Y.L. 2014, Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33-67. doi:10.1146/annurev-arplant-050213-040251
  29. Shin D.H., M.G. Choi, H.K. Lee, M.S Cho, S.B. Choi, G.S. Choi, and Y.I Park 2013, Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochem Biophys Res Commun 430:634-639. doi:10.1016/j.bbrc.2012.11.100
  30. Slama I., T. Ghnaya, K. Hssini, D. Messedi, A. Savoure, and C. Abdelly 2007, Comparative study of mannitol and PEG osmotic stress effects on growth, and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10-17. doi:10.1016/j.envexpbot.2007.02.004
  31. Solfanelli C., A. Poggi, E. Loreti, A. Alpi, and P. Perata 2006, Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637-646. doi:10.1104/pp.105.072579
  32. Son K.H., and M.M. Oh 2013, Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988
  33. Teng S., J. Keurentjes, L. Bentsink, M. Koornneef, and S. Smeekens 2005, Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840-1852. doi:10.1104/pp.105.066688
  34. Tholakalabavi A., J.J. Zwiazek, and T.A. Thorpe 1994, Effect of mannitol and glucose-induced osmotic stress on growth, water relations and solute composition of cell suspension culture of poplar (Populus deltoides var. occidentalis) in relation to anthocyanin accumulation. In Vitro Cell Dev Biol - Plant 30:164-170. doi:10.1007/BF02632208
  35. Tognetti J. A., H.G. Pontis, and G.M.A. Martinez-Noel 2013, Sucrose signaling in plants: A world yet to be explored. Plant Signal Behav 8:e23316. doi:10.4161/psb.23316
  36. Veillet F., C. Gaillard., P. Coutos-Thevenot, and S.L. Camera 2016, Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection. Front Plant Sci 7:1899-1918. doi:10.3389/fpls.2016.01899
  37. Yang S.Y., C.O. Hong, H. Lee, S.Y. Park, B.G. Park, and K.W. Lee 2012, Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo. Food Chem 133:337-343. doi:10.1016/j.foodchem.2012.01.037
  38. Yeom M.S., H.J. Jeong, J.S. Lee, and M.M. Oh 2019, Improvement of bioactive compounds by exogenous sucrose absorbed via mugwort and kale roots. Hortic Sci Technol 37:1-9. doi:10.12972/kjhst.20190001
  39. Zubek S., S. Mielcarek, and K. Turnau 2012, Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149-156. doi:10.1007/s00572-011-0391-1