• Title/Summary/Keyword: ethanol-induced cytotoxicity

Search Result 220, Processing Time 0.025 seconds

Protective Effect of Crataegus pinnatifida and Cinnamomum cassia on Ethanol-induced Cytotoxicity and DNA Damage in HepG2 Cells

  • Kim, Nam Yee;Song, Eun Jeong;Heo, Moon Young
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.237-242
    • /
    • 2014
  • Plant extracts produced from branches of Crataegus pinnatifida and barks of Crataegus pinnatifida inhibited ethanol-induced cytotoxicity and DNA damage in liver cells. Furthermore, these two extracts inhibited the expression and activities of CYP2E1 enzyme. Cinnamomum cassia had a better effect on inhibition of DNA damage than Crataegus pinnatifida, as well as showed a high tendency to inhibit CYP2E1 expression and catalytic activities. It is considered that extracts produced from Crataegus pinnatifida or Cinnamomum cassia have an effect to reduce ethanol-induced cytotoxicity and DNA damage in liver cells. Therefore, we suggest to use Crataegus pinnatifida and Cinnamomum cassia and their ingredients as potential candidate substances to prevent and treat ethanol-induced cytotoxicity and genotoxicity in liver cells.

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo;Kang, Hyung-Sik;Yun, Chul-Ho;Kwak, Hahn-Shik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.492-498
    • /
    • 2012
  • Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

Protective Effect of Korean Medicinal Plants on Ethanol-Induced Cytotoxicity in HepG2 Cells

  • Song, Eun Jeong;Kim, Nam Yee;Heo, Moon Young
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.329-336
    • /
    • 2013
  • The purpose of this study is to evaluate cytoprotective effect of Korean medicinal plants on alcohol-induced cytotoxicity in liver cells. Out of the 120 plant extracts tested in this study, 53 plant extracts enhanced alcohol-induced cytotoxicity in liver cells by 50~80%, while other 11 plant extracts including Crataegus pinnatifida reduced cytotoxicity by 1~68%. The results of DPPH free radical test and LDL lipid peroxidation test on the plant extracts that sharply reduced cytotoxicity in liver cells shows that Crataegus pinnatifida and Cinnamomum cassia had antioxidative effect. This study reports that the plant extracts that enhance or reduce ethanol-induced cytotoxicity in liver cells can be research objects as cytotoxic plants or cytotoxicity-protective plants.

Asparagus cochinchinensis inhibits the ethanol-induced cytotoxicity in Hep G2 cells

  • Kim, Jeong-Joong
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • A human hepatoma cell line, Hep G2 cells are a reliable for the study of alcohol-induced hepatotoxicity. In this study, the author investigated the effect of an aqueous extract of Asparagus $cochinchinensis_{MERRIL}$ (Liliaceae) roots (ACAE) on ethanol (EtOH)-induced cytotoxicity in Hep G2 cells. ACAE dose-dependently inhibited the EtOH-induced tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ secretion. ACAE also inhibited the EtOH and $TNF-{\alpha}-induced$ cytotoxicity. Furthermore, the author found that ACAE inhibited the $TNF-{\alpha}-induced$ apoptosis of Hep G2 cells. These results suggest that ACAE may prevent the EtOH-induced cytotoxicity through inhibition of the apoptosis of Hep G2 cells.

  • PDF

Protective Effect of Green Tea Extract and EGCG on Ethanol-induced Cytotoxicity and DNA Damage in NIH/3T3 and HepG2 Cells

  • Kim, Nam Yee;Kim, Hyun Pyo;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, our aim was to determine whether green tea extract (GTE) and its major constituent, epigallocatechin-3-gallate (EGCG) have a protective effect on ethanol-induced cytotoxicity and DNA damage in NIH/3T3 and HepG2 cells. The cell viability and DNA single strand breaks were examined by MTT assay and alkaline single cell gel electrophoresis (Comet assay), respectively. Ethanol decreased the cell viability and also increased DNA single strand breaks in a concentration-dependent manner. On the other hand, GTE showed the protective effect of cytotoxicity and DNA damage induced by ethanol in both cell lines. GTE and EGCG, were found to possess the anti-oxidative and anti-genotoxic activities by evaluation with DPPH test, LDL oxidation assay, oxidative DNA damage assay and 8OH-2'dG generation test. These results were also verified by the experimental results demonstrating the lower cytotoxicity and genotoxicity of commercial green tea liqueur compared to pure ethanol in same concentration. Thus it is concluded that the supplementation of GTE or EGCG may mitigate the ethanol-induced cytotoxicity and DNA damage.

Protection of ROS-induced cytotoxicity and DNA damage by the extract of Alpinia of ficinarum (양강추출물의 활성산소종 유도 세포독성과 DNA 손상에 대한 방어효과)

  • 이승철;신경승;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.106-116
    • /
    • 2002
  • The 70% ethanol extract of Alpinia officinarum and its major flavonoid, galangin showed strong antioxidative effect on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. However, they did not reveal any pro-oxidant effect on bleomycin-Fe(III) dependent DNA degradation. They also showed the protective effect against $H_2O$$_2$, KO$_2$ or UV-induced cytotoxicity in mammalian cells. They also showed the suppressive effect of DNA damage induced by $H_2O$$_2$ or KO$_2$ with dose-dependent manner in single cell gel electrophoresis(SCGE) assay. On the other hand, they have an anticlastogenic effect against adriamycin-induced micronucleated reticulocyte in peripheral blood of mice. These results suggest that the mechanism of inhibition by 70% ethanol extract of Alpinia officinarum and galangin against reactive oxygen species (ROS)-induced genotoxicity or cytotoxicity is due, at least partly, to their antioxidative and free radical scavenging properties without pro-oxidant effect. All these results indicate that 70% ethanol extract of Alpinia officinarum and galangin may be useful for protection against ROS-induced cytotoxicity and DNA damage.

Protective Effect of Extracts from Euryale ferox against Glutamate-induced Cytotoxicity in Neuronal Cells

  • Lee, Mi-Ra;Kim, Ji-Hyun;Son, Eun-Soon;Park, Hae-Ryong
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.162-166
    • /
    • 2009
  • Oxczaasssaidative stress plays an important role in neuronal cell death, which is associated with neurodegenerative conditions such as Alzheimer's and Parkinson's disease. This study evaluated the neuroprotective effect of Euryale ferox (EF) extracts against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. Specifically, neuroprotective effects of methanol and ethanol extracts were evaluated by the MTT reduction assay. The ethanol extracts of EF displayed dose dependent protection against neuronal cell death induced by 20 mM of glutamate. Furthermore, the ethanol extracts of EF was sequentially fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited neuroprotective effect against glutamate-stressed N18-RE-105 cells. Overall, results suggest that EF extracts can potentially be used as chemotherapeutic agents against neuronal diseases.

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Alcohol induced Cytotoxicity in CYP2E1-transfected HepG2 cells (청간해주탕(淸肝解酒湯)이 CYP2E1-transfected HepG2 cell에서 알코올유발 세포독성에 미치는 영향)

  • Lee, Ji-Eun;Kim, Young-Chul;Woo, Hong-Jung;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • Objectives : Induction of CYP2E1 by ethanol is believed to be one of the major mechanism by which ethanol generate a state of oxidative stress. Previous studies showed that treatment with Chungganhaeju-tang prevents hepatic inflammation and apoptosis in alcoholic liver disease. The purpose of our study is to determine if Chungganhaeju-tang can also protect against alcohol-induced cytotoxicity in CYP2E1-transfected HepG2 cells. Materials and Methods : CYP2E1-transfected HepG2 cells and control vector-transfected HepG2 cells were exposed for isx hours to Chungganhaeju-tang, and then 50 mM of ethanol was added and left for two days. Results : Ethanol significantly decreased cell viability in CYP2E1-transfected HepG2 cells and increased apoptosis. These alterations were attenuated by Chungganhaeju-tang. This was accompanied by an improvement of NF-${\kappa}B$ and Akt activation. Conclusion : These results suggest that Chungganhaeju-tang exerts inhibitory effect against the cytotoxicity induced by alcohol in CYP2E1-transfected HepG2 cells, and that this is a protective action due, at least in part, to an activation of NF-${\kappa}B$ that plays a key role in the protection mechanism, and in reducing hepatotoxic cytokine gene expression.

  • PDF

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Ethanol-mediated Cytokine Expression (청간해주탕이 에탄올 매개성 cytokine 발현에 미치는 영향)

  • 김병삼;김영철;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.190-201
    • /
    • 2003
  • Object : This study was designed to investigate the effects of Chungganhaeju-tang (Qingganjiejiu-tang) on cytotoxicity, growth inhibition, apoptosis and expression of cytokine in damaged HepG2 cells. Method : Toxicity on HepG2 cell induced by ethanol and acetaldehyde was measured for viability, cell growth, DNA replication and generation of apoptosis and cytokine. The recovery of the cell activity by Chungganhaeju-tang was estimated for the measured parameters using PCR with different cycle numbers, DNA gel-electrophoresis, and densitometric analysis, Results : Chungganhaeju-tang improves the recovery of HepG2 cells damaged by ethanol or acetaldehyde. The suppressed DNA synthesis of the cell damaged by ethanol or acetaldehyde is improved by Chungganhaeju-tang. A liver-protection effect was shown by the reduction of apoptosis and $TNF-{\alpha},{\;}IL-1{\beta}$ expressions that are induced by ethanol or acetaldehyde. Conclusion : The result indicates that Chungganhaeju-tang reduces toxicity induced by ethanol or acetaldehyde and recovers damaged liver function.

  • PDF

Effect of Pleurotus ferulae Extracts on Viability of Human Lung Cancer and Cervical Cancer Cell Lines

  • Choi DuBok;Cha Wol-Suk;Kang Si-Hyung;Lee Byoung-Rai
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.356-361
    • /
    • 2004
  • When SiHa cells were incubated for varying periods of time with extracts of PFF and PFM, the cytotoxicity of the ethanol extracts of PFF was higher than those of the other extracts. These results indicated that the extracts from fruiting bodies of p. ferulae contain antitumor Substances. When A549, SiHa and HeLa cells were incubated with different concentrations of PFF and PFM extracts, the ethanol extracts of PFF showed strong cytotoxicity against A549 tells at concentrations over $10{\mu}g/mL$ and against SiHa and HeLa cells at concentrations over $40{\mu}g/mL$. However, the differences in the cytotoxic effects of the hot water and ethanol extracts of PFM and the hot water extracts of PFF on all 3 cancer cells were not significant. Also, the PFF ethanol extracts induced synergistic effects on the TRAIL-induced apoptosis in A549 cells, which were strongly resistant to TRAIL. These results indicated that ethanol extracts of PFF were the most prominent antitumor agents toward lung cancer cells (A549).