Acknowledgement
The authors Sushil Kumar and Pratima Rai would like to thank the Institute of Eminence, University of Delhi, Delhi, India-110007 for providing financial support for this research under grant number /IoE/2021/12/FRP.
References
- O. P. Ahuja, S. Kumar, and V. Ravichandran, Applications of first order differential subordination for functions with positive real part, Stud. Univ. Babes-Bolyai Math. 63 (2018), no. 3, 303-311. https://doi.org/10.24193/subbmath.2018.3.02
- R. M. Ali, N. E. Cho, V. Ravichandran, and S. S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012), no. 3, 1017-1026.
- R. M. Ali, N. K. Jain, and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557-6565.
- M. Arif, M. Raza, I. Ullah, and P. Zaprawa, Hankel determinants of order four for a set of functions with bounded turning of order alpha, Lith. Math. J. 62 (2022), 135-145. https://doi.org/10.1007/s10986-022-09559-8
- M. Arif, I. Ullah, M. Raza, and P. Zaprawa, Investigation of the fifth Hankel determinant for a family of functions with bounded turnings, Math. Slovaca 70 (2020), no. 2, 319-328. https://doi.org/10.1515/ms-2017-0354
- 6] M. Arif, S. Umar, M. Raza, T. Bulboaca, M. U. Farooq, and H. Khan, On fourth Hankel determinant for functions associated with Bernoulli's lemniscate, Hacet. J. Math. Stat. 49 (2020), no. 5, 1777-1787. https://doi.org/10.15672/hujms.535246
- K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1-7.
- S. Banga and S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class S*L, Math. Slovaca 70 (2020), no. 4, 849-862. https://doi.org/10.1515/ms-2017-0398
- P. L. Duren, Univalent functions, Springer, New York, 1983.
- V. Kumar, N. E. Cho, V. Ravichandran, and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), no. 5, 1053-1064. https://doi.org/10.1515/ms-2017-0289
- V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex. 27 (2021), no. 2, Article No. 55.
- S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281.
- V. Madaan, A. Kumar, and V. Ravichandran, Lemniscate convexity of generalized Bessel functions, Stud. Sci. Math. Hung. 56 (2019), no. 4, 404-419.
- C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
- V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505-510. https://doi.org/10.1016/j.crma.2015.03.003
- J. Soko l, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), no. 2, 349-353. https://doi.org/10.5666/KMJ.2009.49.2.349
- J. Soko l and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101-105.
- J. Soko land D. K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44 (2018), no. 1, 83-95.