DOI QR코드

DOI QR Code

BOUND ON HANKEL DETERMINANTS H(2)4 (f) AND H(3)4 (f) FOR LEMNISCATE STARLIKE FUNCTIONS

  • Sushil Kumar (Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering) ;
  • Pratima Rai (Department of Mathematics, University of Delhi) ;
  • Asena Cetinkaya (Department of Mathematics and Computer Science, Istanbul Kultur University)
  • Received : 2022.06.10
  • Accepted : 2022.11.17
  • Published : 2023.03.25

Abstract

We determine the upper bounds on fourth order Hankel determinants H(2)4(f) and H(3)4(f) for the class S*L of lemniscate starlike functions defined on the open unit disk which was introduced by Sokół and Stankiewicz in [17].

Keywords

Acknowledgement

The authors Sushil Kumar and Pratima Rai would like to thank the Institute of Eminence, University of Delhi, Delhi, India-110007 for providing financial support for this research under grant number /IoE/2021/12/FRP.

References

  1. O. P. Ahuja, S. Kumar, and V. Ravichandran, Applications of first order differential subordination for functions with positive real part, Stud. Univ. Babes-Bolyai Math. 63 (2018), no. 3, 303-311. https://doi.org/10.24193/subbmath.2018.3.02
  2. R. M. Ali, N. E. Cho, V. Ravichandran, and S. S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012), no. 3, 1017-1026.
  3. R. M. Ali, N. K. Jain, and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557-6565.
  4. M. Arif, M. Raza, I. Ullah, and P. Zaprawa, Hankel determinants of order four for a set of functions with bounded turning of order alpha, Lith. Math. J. 62 (2022), 135-145. https://doi.org/10.1007/s10986-022-09559-8
  5. M. Arif, I. Ullah, M. Raza, and P. Zaprawa, Investigation of the fifth Hankel determinant for a family of functions with bounded turnings, Math. Slovaca 70 (2020), no. 2, 319-328. https://doi.org/10.1515/ms-2017-0354
  6. 6] M. Arif, S. Umar, M. Raza, T. Bulboaca, M. U. Farooq, and H. Khan, On fourth Hankel determinant for functions associated with Bernoulli's lemniscate, Hacet. J. Math. Stat. 49 (2020), no. 5, 1777-1787. https://doi.org/10.15672/hujms.535246
  7. K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1-7.
  8. S. Banga and S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class S*L, Math. Slovaca 70 (2020), no. 4, 849-862. https://doi.org/10.1515/ms-2017-0398
  9. P. L. Duren, Univalent functions, Springer, New York, 1983.
  10. V. Kumar, N. E. Cho, V. Ravichandran, and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), no. 5, 1053-1064. https://doi.org/10.1515/ms-2017-0289
  11. V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex. 27 (2021), no. 2, Article No. 55.
  12. S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281.
  13. V. Madaan, A. Kumar, and V. Ravichandran, Lemniscate convexity of generalized Bessel functions, Stud. Sci. Math. Hung. 56 (2019), no. 4, 404-419.
  14. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
  15. V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505-510. https://doi.org/10.1016/j.crma.2015.03.003
  16. J. Soko l, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), no. 2, 349-353. https://doi.org/10.5666/KMJ.2009.49.2.349
  17. J. Soko l and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101-105.
  18. J. Soko land D. K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44 (2018), no. 1, 83-95.