DOI QR코드

DOI QR Code

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Kaveh Asgari (Department of Mining Engineering, Bahonar university of Kerman) ;
  • Mehdi Kargozari (Department of Mining Engineering, Hamedan University of Technology) ;
  • Pouyan Ebneabbasi (Department of Civil Engineering, Azad University)
  • 투고 : 2021.08.28
  • 심사 : 2022.12.06
  • 발행 : 2023.03.25

초록

In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

키워드

참고문헌

  1. Aliha, M.R.M., Imani, D.M., Salehi, S.M., Shojaee, M., Abedi, M. (2022), "Mixture optimization of epoxy base concrete for achieving highest fracture toughness and fracture energy values using Taguchi method", Compos. Commun., 32, 101150. https://doi.org/10.1016/j.coco.2022.101150.
  2. Aliha, M.R.M., Reza Karimi, H., Ghoreishi, S.M.N. (2022), "Design and validation of simple bend beam specimen for covering the full range of I+ II fracture modes", Eur. J. Mech.-A/Solid., 91, 104425. https://doi.org/10.1016/j.euromechsol.2021.104425.
  3. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  4. Shemirani, A.B., Sarfarazi, V., Haeri, H., Marji, M.F. and Shahin Hosseini, S. (2018), "A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, 21(2), 189-197. https://doi.org/10.12989/cac.2018.21.2.189.
  5. Bi, J. and Zhou, X.P. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49, 1611-162. https://doi.org/10.1007/s00603-015-0867-y.
  6. Chehade, F.H. and Shahrour, I. (2008), "Numerical analysis of the interaction between twin-tunnels: Influence of the relative position and construction procedure", Tunn. Undergr. Space Techol., 23, 210-214. https://doi.org/10.1016/j.tust.2007.03.004.
  7. Cui, Z.D., Liu, D.A., An, G.M., Sun, B., Zhou, M., Cao, F.Q. (2010), "A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness", Int. J. Rock Mech. Min. Sci. 47, 871-876. https://doi.org/10.1016/j.ijrmms.2009.12.015.
  8. Chen, R.P., Zhu, J., Liu, W. and Tang, X.W. (2011), "Ground movement induced by parallel EPB tunnels in silty soils", Tunn. Undergr. Space Technol., 26(1), 163-171. https://doi.org/10.1016/j.tust.2010.09.004.
  9. Chung, J.S., Moon, I.K. and Yoo, C.H. (2013), "Behaviour characteristics of tunnel in the cavity ground by using scale model tests", J. Korean Geo Environ. Soc., 14(12), 61-69. https://doi.org/10.14481/jkges.2013.14.12.061.
  10. Demir, A. and Caglar, N. (2020), "Numerical determination of crack width for reinforced concrete deep beams", Comput. Concrete, 27(2), 193-204. https://doi.org/10.12989/cac.2020.27.2.193.
  11. Das, R., Singh, P.K., Kainthoal, A., Panthee, S. and Singh, T.N. (2017), "Numerical analysis of surface subsidence in asymmetric parallel highway tunnels", J. Rock Mech. Geotech. Eng., 9, 170-179. https://doi.org/10.1016/j.jrmge.2016.11.009.
  12. Ghaboussi, J. and Ranken, R.E. (1977), "Interaction between two parallel tunnels", Int. J. Numer. Anal. Method. Geomech, 1(1), 75-103. https://doi.org/10.1002/nag.1610010107.
  13. Gercek, H. (2005), "Interaction between parallel underground openings", The 19th International Mining Congress and Fair of Turkey, Izmir, Turkiye, June.
  14. Huang, Y.Q. and Hu, S.W. (2019), "A cohesive model for concrete mesostructure considering friction effect between cracks", Comput. Concrete, 24(1), 51-61. https://doi.org/10.12989/cac.2019.24.1.051.
  15. Huang, X., Huang, H. and Zhang, J. (2012), "Flattening of jointed shield-driven tunnel induced by longitudinal differential settlements", Tunn. Undergr. Space Technol., 31, 20-32. https://doi.org/10.1016/j.tust.2012.04.002.
  16. Hsiao, F.Y., Wang, C.L. and Chern, J.C. (2009) "Numerical simulation of rock deformation for support design in tunnel intersection area", Tunn. Undergr. Space Tech., 24, 14-21. https://doi.org/10.1016/j.tust.2008.01.003.
  17. Iqbal, M.J. and Mohanty, B. (2007), "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mech. Rock Eng., 40(5), 453-475. https://doi.org/10.1007/s00603-006-0107-6.
  18. Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Itasca Consulting Group Inc., Minneapolis, Minnesota, USA.
  19. Kim, W.B., Yang, H.S. and Ha, T.H. (2012), "An assessment of rock pillar behavior in very near parallel tunnel", J. Korean Tunn. Undergr. Space Assoc., 22(1), 60-68. https://doi.org/10.7474/TUS.2012.22.1.060.
  20. Kim, J.K. and Lee, S. (2013), "A study on the estimation of the behaviors by compression method of rock pillar between close parallel tunnels", J. Korean Geotech. Soc., 29(12), 87-94. https://doi.org/10.7843/kgs.2013. 29.12.87.
  21. Kang, J.G., Yang, H.S. and Jang, S.J. (2014), "Stability analysis of rock pillar in the diverging area of road tunnel", J. Korean Tunn. Undergr. Space Assoc., 24(5), 344-353. https://doi.org/10.7474/TUS.2014.24.5.344.
  22. Kovari, K. (2003), "History of the sprayed concrete lining method-part II: Milestones up to the 1960s", Tunn. Undergr. Space Technol., 18(1), 71-83. https://doi.org/10.1016/S0886-798(03)00006-3.
  23. Kim, J.H. and Kim, J.W. (2017), "Stability estimation of the pillar between twin tunnels considering various site conditions", J. Korean Tunn. Undergr. Space Assoc., 27(2), 109-119. https://doi.org/10.7474/TUS.2017.27.2.109.
  24. Lim, H.M. and Son, K.R. (2014), "The stability analysis of near parallel tunnels pillar at multi-layered soil with shallow depth by numerical analysis", J. Korean Geo Environ. Soc, 15(1), 53-62. https://doi.org/10.14481/jkges.2014.15.1.53.
  25. Liu, H.Y., Small, J.C., Carter, J.P. and Williams, D.J. (2009), "Effects of tunnelling on existing support systems of perpendicularly crossing tunnels", Comput. Geotech., 36(5), 880-894. https://doi.org/10.1016/j.compgeo.2009.01.013.
  26. Li, X.G. and Yuan, D.J. (2012), "Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels", Tunn. Undergr. Space Technol., 28, 18-30. https://doi.org/10.1016/j.tust.2011.08.005.
  27. Li, X., Yan, Z., Wang, Z. and Zhu, H. (2015), "Experimental and analytical study on longitudinal joint opening of concrete segmental lining", Tunn. Undergr. Space Technol., 46, 52-63. https://doi.org/10.1016/j.tust.2014.11.002.
  28. Mota, M. (2021), "A 3D probabilistic model for explicit cracking of concrete", Comput. Concrete, 27(6), 549-562. https://doi.org/10.12989/cac.2021.27.6.549.
  29. Moallemi, S. and Pietruszczak, S. (2018), "Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR", Comput. Concrete, 22(1), 1-10. https://doi.org/10.12989/cac.2018.22.1.001.
  30. Najjar, S., Moghaddam, A.M., Sahaf, A. and Aliha, M.R.M. (2022), "Aging effect on the mixed-mode (I/III) fracture toughness of cement emulsified asphalt composite: Experimental and statistical investigation engineering", Frac. Mech., 21(3), 108292. https://doi.org/10.1016/j.engfracmech.2022.108292.
  31. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  32. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  33. Shin, J.H., Potts, D.M. and Zdravkovic, L. (2005), "The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil", Canadian Geotech. J., 42(6), 1585-1599. https://doi.org/10.1139/t05-072.
  34. Shou, Y. and Zhou, X.P. (2019a), "A coupled thermomechanical nonordinary state-based peridynamics for thermally induced cracking of rocks", Fatigue Fract. Eng. Mater. Struct., 43(2), 371-386. https://doi.org/10.1111/ffe.13155.
  35. Shou, Y. and Zhou, X.P. (2019b), "3D numerical simulation of initiation, propagation and coalescence of cracks using the extended non-ordinary state-based peridynamics", Theoret. Appl. Fract. Mech., 101, 254-268. https://doi.org/10.1016/j.tafmec.2019.03.006.
  36. Shi, J., Ng, C.W.W. and Chen, Y. (2015), "Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel", Comput. Geotech., 63, 146-158. https://doi.org/ 10.1016/j.compgeo.2014.09.002.
  37. Tutluoglu, L., Batan, C.K. and Aliha, M.R.M. (2022), "Tensile mode fracture toughness experiments on andesite rock using disc and semi-disc bend geometries with varying loading spans" Theoret. Appl. Fract. Mech., 119, 103325. https://doi.org/10.1016/j.tafmec.2022.103325.
  38. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.000.
  39. Xie, J., Gunn, M.J. and Rahim, A. (2004), "Collapse analysis for two parallel circular tunnels with different diameters in soil", Proceedings of 9th International Symposium on Numerical Models in Geomechanics - NUMOG IX, Ottawa, Canada, August.
  40. Ye, F., Gou, C.F., Sun, H.D., Liu, Y.P., Xia, Y.X. and Zhou, Z. (2014), "Model test study on effective ratio of segment transverse bending rigidity of shield tunnel", Tunn. Undergr. Space Technol., 41, 193-205. https://doi.org/10.1016/j.tust.2013.12.011.
  41. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., O ner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  42. Yaylaci, M., Yayli, M., Yaylaci E.U., O lmez, H. and Birinci A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585
  43. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  44. Yu, A., Andersen, D.H., He, J., Zhang, Z. (2021), "Is it possible to measure the tensile strength and fracture toughness simultaneously using flattened Brazilian disk?", Eng. Fract. Mech., 247, 107633. https://doi.org/10.1016/j.engfracmech.2021.107633.
  45. Yaylaci, M., Adiyaman, E., O ner, E. and Birinci, A. (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-207. https://doi.org/10.12989/cac.2021.27.3.199.
  46. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  47. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541.
  48. Yaylaci, M. and Avcar, M. (2020b), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114, https://doi.org/10.12989/cac.2020.26.2.107.
  49. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  50. Zhu, X. and Chen, X. (2019), "Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC", Comput. Concrete, 24(6), 527-539. https://doi.org/10.12989/cac.2019.24.6.527.
  51. Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple preexisting flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4.