DOI QR코드

DOI QR Code

Moment redistribution of RC continuous beams: Re-examination of code provisions

  • Da Luo (School of Civil Engineering, Chang'an University) ;
  • Zhongwen Zhang (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University) ;
  • Bing Li (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2022.05.03
  • Accepted : 2023.02.16
  • Published : 2023.03.10

Abstract

Many codes allow designers to use the bending moment diagram computed by elastic analysis and modify it by a certain amount of moment redistribution (MR) to account for plastic behaviour of continuous beams. However, several researchers indicated that the MR at the ultimate limit state (𝛽u) for some beams deviate significantly from the specified values of various codes. This paper examines the applicability of the provisions on 𝛽u in ACI 318-19 and Eurocode 2 through numerical investigations and comprehensively explores the influencing factors. The results show that some parameters not considered in those codes influence 𝛽u to a certain extent, where the ratio of tensile reinforcement ratio at intermediate support to tensile reinforcement ratio at midspan (𝜌s1/𝜌s2) and load type are crucial parameters to consider. The specific combination of these two parameters may make the codes overestimate or significantly underestimate the 𝛽u. On the other hand, the yield state of both critical sections is found to have an important influence on the influence degree of each parameter on 𝛽u. The yield conditions are investigated, and an empirical judgment equation is proposed. In addition, the influence laws of the critical parameters on 𝛽u have been further proved by theoretical derivation. Finally, due to 𝜀t is found to have a better linear correlation with 𝛽u than xu/d, equations as a function of 𝜀t for predicting the 𝛽u of continuous beams under the two loads are proposed, respectively.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Fundamental Research Funds for the Central Universities, CHD (300102282106). The authors wish to express their gratitude for this financial support.

References

  1. Accornero, F., Cafarelli, R. and Carpinteri, A. (2022), "The cohesive/overlapping crack model for plain and RC beams: Scale effects on cracking and crushing failures", Mag. Concrete Res., 74(9), 433-450. https://doi.org/10.1680/jmacr.20.00260.
  2. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  3. Adaszkiewicz, M.L. (1977), "Behavior of continuous R.C. beams under uniform loads", Ph.D. Dissertation, McGill University, Montreal.
  4. Ahmad, N., Masoudi, M. and Salawdeh, S. (2021), "Cyclic response and modelling of special moment resisting beams exhibiting fixed-end rotation", Bull. Earthq. Eng., 19, 203-240. https://doi.org/10.1007/s10518-020-00987-w.
  5. Alavi-Dehkordi, S., Mostofinejad, D. and Alaee, P. (2019), "Effects of high-strength reinforcing bars and concrete on seismic behavior of RC beam-column joints", Eng. Struct., 183(3), 702-719. https://doi.org/10.1016/j.engstruct.2019.01.019.
  6. Bagge, N., O'Connor, A., Elfgren, L. and Pedersen, C. (2014), "Moment redistribution in RC beams-a study of the influence of longitudinal and transverse reinforcement ratios and concrete strength", Eng. Struct., 80(12), 11-23. https://doi.org/10.1016/j.engstruct.2014.08.029.
  7. Baji, H. and Ronagh, H.R. (2013), "Reliability analysis of moment redistribution in reinforced concrete beams", Mag. Concrete Res., 65(13), 769-779. https://doi.org/10.1680/macr.12.00147.
  8. Bigaj, A.J. (1999), "Structural dependence of rotation capacity of plastic hinge in RC beams and slabs", Ph.D. Dissertation, Delft University of Technology, Delft.
  9. Carmo, R.N.F. and Lopes, S.M.R. (2005), "Ductility and linear analysis with moment redistribution in reinforced high-strength concrete beams", Can. J. Civil Eng., 32(1), 194-203. https://doi.org/10.1139/l04-080.
  10. Carmo, R.N.F. and Lopes, S.M.R. (2008), "Available plastic rotation in continuous high-strength concrete beams", Can. J. Civil Eng., 35(10), 1152-1162. https://doi.org/10.1139/L04-080.
  11. Carpinteri, A., Accornero, F. and Cafarelli, R. (2021), "Scaledependent maximum reinforcement percentage in reinforced concrete beams", Struct. Concrete, 22(4), 2155-2166. https://doi.org/10.1002/suco.202000573.
  12. Chan, K.H.E. and Babaghasabha, V. (2015), "Behaviour of continuous prestressed concrete beams with external tendons", Struct. Eng. Mech., 55(6), 1099-1120. https://doi.org/10.12989/sem.2015.55.6.1099.
  13. Cohn, M.Z. (1965), "Rotational compatibility in the limit design of reinforced concrete continuous beams", Spec. Publ., 12, 359-382.
  14. CSA A23.3-19 (2019), Design of Concrete Structures, Canadian Standards Association, Toronto, ON, Canada.
  15. Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, 15th Edition, McGraw-Hill Education, New York, NY, USA.
  16. Diab, H.M.A., Abdelaleem, T. and Rashwan, M.M.M. (2020), "Moment redistribution and flexural performance of RC continuous T-beams strengthened with NSM FRP or steel bars", Struct., 28(12), 1516-1538. https://doi.org/10.1016/j.istruc.2020.09.003.
  17. Ehsani, R., Sharbatdar, M.K. and Kheyroddin, A. (2019), "Ductility and moment redistribution capacity of two-span RC beams", Mag. Civil Eng., 90(6), 104-108. https://doi.org/10.18720/MCE.90.10.
  18. EI-Mogy, M., EI-Ragaby, A. and El-Salakawy, E.F. (2010), "Flexural behavior of continuous FRP-reinforced concrete beams", J. Compos. Constr., 14(6), 669-680. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000140.
  19. EN 1992-1-1 (2004), Eurocode 2, Design of Concrete StructuresPart 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  20. Gamino, A.L. and Bittencourt, T.N. (2007), "Numerical evaluation of plastic rotation capacity in RC beams", Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Catania, Italy, June.
  21. Li, B., Qian, K. and Xue, W. (2012), "Effects of eccentricity on the seismic rehabilitation performance of nonseismically detailed interior beamwide column joints", J. Compos. Constr., 16(5), 507-519. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000287.
  22. Li, L., Zheng, W. and Wang, Y. (2019), "Prediction of moment redistribution in statically indeterminate reinforced concrete structures using artificial neural network and support vector regression", Appl. Sci., 9(1), 28. https://doi.org/10.3390/app9010028.
  23. Lin, H. and Chien, Y.M. (2000), "Effect of section ductility on moment redistribution of continuous concrete beams", J. Chin. Inst. Eng., 23(2), 131-141. https://doi.org/10.1080/02533839.2000.9670531.
  24. Lopes, S.M. and Carmo, R.N.F. (2006), "Deformable strut and tie model for the calculation of plastic rotation capacity", Comput. Struct., 84(31-32), 2174-2183. https://doi.org/10.1016/j.compstruc.2006.08.028.
  25. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2014a), "Evaluation of moment redistribution in normal-strength and high-strength reinforced concrete beams", J. Struct. Eng., 140(10), 01526126. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000994.
  26. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2014b), "FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams", Struct. Eng. Mech., 49(3), 373-393. https://doi.org/10.12989/sem.2014.49.3.373.
  27. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2015), "Redistribution of moments in reinforced high-strength concrete beams with and without confinement", Struct. Eng. Mech., 55(2), 379-398. https://doi.org/10.12989/sem.2015.55.2.379.
  28. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2017), "Effect of relative stiffness on moment redistribution in reinforced high-strength concrete beams", Mag. Concrete Res., 69(14), 716-727. https://doi.org/10.1680/jmacr.15.00499.
  29. Mostofinejad, D. and Farahbod, F. (2007), "Parametric study on moment redistribution in continuous RC beams using ductility demand and ductility capacity concept", I.J.S.T.-T. Civil Eng., 31(B5), 459-471. https://doi.org/10.22099/ijstc.2007.747.
  30. Oehlers, D.J., Haskett, M. and Ali, M.S.M. (2011), "Design for moment redistribution in FRP plated RC beams", Struct. Eng. Mech., 38(6), 697-714. https://doi.org/10.12989/sem.2011.38.6.697.
  31. Scott, R.H. and Whittle, R.T. (2005), "Moment redistribution effects in beams", Mag. Concrete Res., 57(1), 9-20. https://doi.org/10.1139/L08-064.
  32. Shakir, A. (2005), "Moment redistribution in reinforced concrete structures", Ph.D. Dissertation, University of Alberta, Edmonton.