Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) [NRF-2019R1A2C2085749, NRF-2022M3A9B6017654, and NRF-2020R1A2C2010329].
References
- Akram, M., Shin, I., Kim, K. A., Noh, D., Baek, S. H., Chang, S. Y., Kim, H. and Bae, O. N. (2016) A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: the Nrf2/heme oxygenase signaling as a potential target. Toxicol. Appl. Pharmacol. 307, 62-71. https://doi.org/10.1016/j.taap.2016.07.013
- An, S., Kim, G., Kim, H. J., Ahn, S., Kim, H. Y., Ko, H., Hyun, Y. E., Nguyen, M., Jeong, J., Liu, Z., Han, J., Choi, H., Yu, J., Kim, J. W., Lee, H. W., Jacobson, K. A., Cho, W. J., Kim, Y. M., Kang, K. W., Noh, M. and Jeong, L. S. (2020a) Discovery and structure-activity relationships of novel template, truncated 1'-homologated adenosine derivatives as pure dual PPARγ/δ modulators. J. Med. Chem. 63, 16012-16027. https://doi.org/10.1021/acs.jmedchem.0c01874
- An, S., Yu, J., Choi, H., Ko, H., Ahn, S., Shin, J. C., Pyo, J. J., Jeong, L. S. and Noh, M. (2020b) Selenium bioisosteric replacement of adenosine derivatives promoting adiponectin secretion increases the binding affinity to peroxisome proliferator-activated receptor δ. Bioorg. Med. Chem. 28, 115226.
- Avgerinos, K. I., Spyrou, N., Mantzoros, C. S. and Dalamaga, M. (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92, 121-135. https://doi.org/10.1016/j.metabol.2018.11.001
- Baek, S. H., Jang, H. and Kim, H. (2015) Synthesis and biological evaluation of acetylcholinesterase inhibitor macakurzin C and its derivatives. Synlett 26, 1131-1134. https://doi.org/10.1055/s-0034-1380193
- Bernardes, A., Souza, P. C., Muniz, J. R., Ricci, C. G., Ayers, S. D., Parekh, N. M., Godoy, A. S., Trivella, D. B., Reinach, P., Webb, P., Skaf, M. S. and Polikarpov, I. (2013) Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J. Mol. Biol. 425, 2878-2893. https://doi.org/10.1016/j.jmb.2013.05.010
- Boutari, C. and Mantzoros, C. S. (2020) Adiponectin and leptin in the diagnosis and therapy of NAFLD. Metabolism 103, 154028.
- Bruning, J. B., Chalmers, M. J., Prasad, S., Busby, S. A., Kamenecka, T. M., He, Y., Nettles, K. W. and Griffin, P. R. (2007) Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15, 1258-1271. https://doi.org/10.1016/j.str.2007.07.014
- Capelli, D., Cerchia, C., Montanari, R., Loiodice, F., Tortorella, P., Laghezza, A., Cervoni, L., Pochetti, G. and Lavecchia, A. (2016) Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Sci. Rep. 6, 34792.
- Han, Y., Liu, J., Ahn, S., An, S., Ko, H., Shin, J. C., Jin, S. H., Ki, M. W., Lee, S. H., Lee, K. H., Shin, S. S., Choi, W. J. and Noh, M. (2020) Diallyl biphenyl-type neolignans have a pharmacophore of PPARα/γ dual modulators. Biomol. Ther. (Seoul) 28, 397-404. https://doi.org/10.4062/biomolther.2019.180
- Harmon, G. S., Lam, M. T. and Glass, C. K. (2011) PPARs and lipid ligands in inflammation and metabolism. Chem. Rev. 111, 6321-6340. https://doi.org/10.1021/cr2001355
- Hoppmann, J., Perwitz, N., Meier, B., Fasshauer, M., Hadaschik, D., Lehnert, H. and Klein, J. (2010) The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. J. Endocrinol. 204, 153-164. https://doi.org/10.1677/JOE-09-0292
- Hossain, M. M., Mukheem, A. and Kamarul, T. (2015) The prevention and treatment of hypoadiponectinemia-associated human diseases by up-regulation of plasma adiponectin. Life Sci. 135, 55-67. https://doi.org/10.1016/j.lfs.2015.03.010
- Kojetin, D. J. and Burris, T. P. (2013) Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Mol. Pharmacol. 83, 1-8. https://doi.org/10.1124/mol.112.079285
- Kroker, A. J. and Bruning, J. B. (2015) Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. 2015, 816856.
- Lee, D., Shin, I., Ko, E., Lee, K., Seo, S. Y. and Kim, H. (2014) Total synthesis of acetylcholinesterase inhibitor macakurzin C. Synlett 25, 2794-2796. https://doi.org/10.1055/s-0034-1378904
- Nakamura, M. T., Yudell, B. E. and Loor, J. J. (2014) Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124-144. https://doi.org/10.1016/j.plipres.2013.12.001
- Rajapaksha, H., Bhatia, H., Wegener, K., Petrovsky, N. and Bruning, J. B. (2017) X-ray crystal structure of rivoglitazone bound to PPARγ and PPAR subtype selectivity of TZDs. Biochim. Biophys. Acta, Gen. Subj. 1861, 1981-1991. https://doi.org/10.1016/j.bbagen.2017.05.008
- Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133. https://doi.org/10.1016/j.bcp.2008.09.033
- Stern, J. H., Rutkowski, J. M. and Scherer, P. E. (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770-784. https://doi.org/10.1016/j.cmet.2016.04.011
- Trinh Thi Thanh, V., Doan Thi Mai, H., Pham, V. C., Litaudon, M., Dumontet, V., Gueritte, F., Nguyen, V. H. and Chau, V. M. (2012) Acetylcholinesterase inhibitors from the leaves of Macaranga kurzii. J. Nat. Prod. 75, 2012-2015. https://doi.org/10.1021/np300660y
- Wang, L., Waltenberger, B., Pferschy-Wenzig, E. M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M. and Atanasov, A. G. (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol. 92, 73-89. https://doi.org/10.1016/j.bcp.2014.07.018
- Wu, C. C., Baiga, T. J., Downes, M., La Clair, J. J., Atkins, A. R., Richard, S. B., Fan, W., Stockley-Noel, T. A., Bowman, M. E., Noel, J. P. and Evans, R. M. (2017) Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proc. Natl. Acad. Sci. U. S. A. 114, E2563-E2570. https://doi.org/10.1073/pnas.1621513114
- Xu, H. E., Lambert, M. H., Montana, V. G., Plunket, K. D., Moore, L. B., Collins, J. L., Oplinger, J. A., Kliewer, S. A., Gampe, R. T., McKee, D. D., Moore, J. T. and Willson, T. M. (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. U. S. A. 98, 13919-13924. https://doi.org/10.1073/pnas.241410198
- Yu, J., Ahn, S., Kim, H. J., Lee, M., Ahn, S., Kim, J., Jin, S. H., Lee, E., Kim, G., Cheong, J. H., Jacobson, K. A., Jeong, L. S. and Noh, M. (2017) Polypharmacology of N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and related A3 adenosine receptor ligands: peroxisome proliferator activated receptor (PPAR) γ partial agonist and PPARδ antagonist activity suggests their antidiabetic potential. J. Med. Chem. 60, 7459-7475. https://doi.org/10.1021/acs.jmedchem.7b00805
- Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., Lippman, S. M. and Shureiqi, I. (2006) Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene 25, 1225-1241. https://doi.org/10.1038/sj.onc.1209160